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Abstract—Traditional approaches to developing test programs
for Analog Mixed-Signal (AMS) circuits are characterized by
time constraints and high costs and often depend heavily on
physical chip validation. These tests require the use of specific test
inputs, a process that relies significantly on expert knowledge due
to the complexity of the AMS circuit under test (CUT). Therefore,
there is a growing demand for a virtual test framework that
facilitates the execution of test programs prior to chip fabrication
and provides early insights into their validity. This paper presents
a simulation framework that uses architecture independent
behavioral models of AMS circuits with customizable error
characteristics in Verilog-AMS. The proposed framework also
incorporates models of test equipment and signal transmission
paths. Exemplary simulation results using the Siemens Questa
simulator that demonstrate the feasibility of this approach are
provided.

Index Terms—virtual test, framework, behavioral model,
Verilog-AMS, simulation, analog mixed-signal, error model

I. INTRODUCTION

In semiconductor manufacturing it is essential to ensure the
correct functionality of the Integrated Circuits (ICs). There-
fore, the chips are extensively tested after the production phase
using specialized testing equipment. This process involves
the execution of a test program on the testers, consisting
of test sequences with defined inputs and expected outputs,
tailored to evaluate specific functions of the chip. When testing
the Analog Mixed-Signal (AMS) circuits of the Chip Under
Test (CUT), the design process and the validation of the test
program is especially complex and challenging.

This is why creating effective test programs requires exper-
tise and time from test engineers. In addition, verification of
these programs depends on the availability of physical chips,
further complicating the process and delaying validation until
the first chips finished production. Prior to chip manufacturing,
an urgent need exists in the industry for more efficient methods
of validating test programs in order to achieve time and cost
savings. To address this limitation and enable pre-tapeout
validation of the test programs, a simulative approach is
pursued [1]. Although simulations are commonly used during
chip design, they are mainly performed as SPICE simulations

Simulation

Loadboard

Testhead

T
es

t 
In

st
ru

m
en

t 
C

a
rd

T
es

t 
In

st
ru

m
en

t 
C

a
rd

T
es

t 
In

st
ru

m
en

t 
C

a
rd

T
es

t 
In

st
ru

m
en

t 
C

a
rd

Test Execution 
Environment

Loadboard

T
es

t 
In

st
ru

m
en

t 
C

ar
d

T
es

t 
In

st
ru

m
en

t 
C

ar
d

T
es

t 
In

st
ru

m
en

t 
C

ar
d

T
es

t 
In

st
ru

m
en

t 
C

ar
d

Real Virtual Test

Fig. 1. Schematic comparison between real and virtual test.

when it comes to AMS circuits. As they are modeling the
circuits at transistor level, they provide highly precise results,
but also require extensive computational resources and time.
Consequently, their use for test program development and
validation in a virtual testing approach is not desired. Even
though obtaining realistic simulation results is ideal, there is
no immediate requirement to model the chip based on its
individual circuit elements and architecture. Hence an alter-
native approach based on behavioral models can be used. For
that, the CUTs behavior is modeled in a Hardware Description
Language (HDL) such as Verilog-AMS with additional support
for analog signals [2].
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In comparison to SPICE models which can be exported
directly from the chip design software, the behavioral models
must be created in an additional step that is not automated.
However, their potential to accelerate the validation of test
programs by enabling simulation-based verification prior to
tapeout represents a promising way to increase efficiency in the
semiconductor industry. Therefore, a standardized approach is
needed to make the use of behavioral models more accessible
and faster.

Contributions: This paper presents a framework for vir-
tual testing based on behavioral models. The architecture-
independent models have an ideal behavior that can be adapted
to typically occurring errors. We demonstrate the seamless
integration of the behavioral models into our framework
by using standardized wrappers. Furthermore, we introduce
standardized input sources that support automatic testbench
creation. Finally, we discuss the framework’s interface to
commercial simulators and the essential data post-processing
procedures to ensure applicability in real-world scenarios.

The organization of this paper is as follows. In Section II
we give an overview of the state of the art. An example
for a behavioral model of an Analog-to-Digital Converter
(ADC) with parametrizable errors is presented in Section III.
In Section IV the architecture of the framework is addressed,
including the standardized model wrapper, input source mod-
els, output measurement models, and the simulation interface.
Simulation results of the models generated with the framework
are presented in Section V.

II. STATE OF THE ART

In this section, we first provide an overview of the testing
process of ICs and AMS circuits in particular. Second, we
explain AMS circuit testing using an ADC as an example.
Third, we give background information about existing work
on simulative approaches and behavioral modeling of AMS
circuits.

A. The Chip Testing Process

The used automated chip test equipment includes a test
head, mainframe, and a computer [3]. While the main power
supply and temperature regulators are in the mainframe, the
measurement equipment is located in the test head in the form
of exchangeable instrument cards (see Figure 1). Since not
only one type of chip is tested on the tester, a loadboard
with the corresponding chip socket is developed for each
CUT, which establishes the connections between the test
instruments and the chip. The connected computer runs a test
program specifically designed for the CUT. During testing, the
computer sends the test patterns to the instruments memory
and receives the measurement results afterwards for further
analysis [1], [3].

The test program consists of program blocks tailored to
specific parts of the circuits. When working with AMS circuits,
the program code must be fine-tuned by the test engineers.
In contrast to digital logic tests, where the results are binary
(pass or fail), more nuanced results can be expected when

testing AMS circuits as parametric shifts caused by process
variations occur. Since parametric shifts can lie within the
tolerance range, they do not necessarily result in a fail binning,
but can still be considered to be functioning properly [3].

B. Testing of an ADC

An Analog-to-Digital Converter (ADC) is a fundamental
AMS component that acts as an interface element between
analog and digital signals. As such, the ADC converts an
analog input voltage into a digital representation at its output.
In this process, the input voltage is mapped to specific digital
codes, with the lowest and highest digital codes representing
the negative and positive reference voltages applied to the
ADC respectively.

The basic idea of ADC testing is to check the correct
assignment of output codes to input voltage intervals. Con-
sequently, a voltage ramp starting from the negative reference
voltage to the positive reference voltage is a common choice
for the input voltage stimuli (see Figure 4). This approach
ensures that all possible input voltages are applied sequentially,
allowing for the verification of each digital code. Based on
the combinations of applied input voltage and corresponding
measured output codes, the prominent error characteristics of
an ADC can be derived:

• Offset error,
• Gain error,
• Differential Non-Linearity (DNL),
• Integral Non-Linearity (INL),
• Missing codes.

To save time when calculating these error characteristics, the
histogram method is used, in which the number of sample hits
per code are counted. The individual errors can be calculated
using irregularities in the histogram. In the case of a ramp
input voltage, subsequent weighting as with sine functions is
avoided. Nevertheless, the slope of the ramp needs still to
be adjusted so that there are sufficient hits per code for the
histogram results to be reliable.

C. Simulation of AMS circuits

To be able to make initial predictions before the chips are
physically present and thus before the first real measurements
are taken, simulations are used [1]. Already during the design
phase of chips, simulations are executed in order to be able to
test their functionality. These SPICE simulations (Simulation
Program with Integrated Circuit Emphasis) are carried out at
transistor level. By considering individual transistor character-
istics they offer precise and detailed results with significant
computational costs. Another method for simulating AMS
circuits are behavioral simulations using Hardware Description
Languages (HDLs) such as Verilog-AMS. In contrast to SPICE
simulations, behavioral simulations focus on the response of
circuits at a high-level and are therefore suitable for system-
level analysis. The level of detail of the behavioral model
determines the accuracy of the results and the computing
time required. Verilog-AMS is particularly characterized by
its ability to describe both analog and digital behavior within



the same HDL. As an extension of the regular Verilog, which
can only represent digital aspects, it also makes it possible
to model and simulate AMS components by integrating ana-
log signals in the form of the electrical discipline [2]. A
comparison between a behavioral model approach based on
different HDLs with a regular SPICE simulation shows that the
computational requirements are significantly less when using
HDLs [4], [5].

Models for AMS components have existed for some time,
starting with the development of AMS extensions for HDLs
[2]. Mostly, behavioral models are tailored to specific archi-
tectures [6] or in the case of architecture-independent models
focus primarily on idealized behavior [2], [7] and neglect the
incorporation of errors.

More recently, a proposal in [8] introduces a generic error
behavior model targeting the behavior of MOSFETs. This
model includes four modes: (i) free (no error), (ii) open drain,
and shorts ((iii) gate-drain, (iv) drain-source). As such, the
model refers to a lower level and does not describe errors
of system components such as ADCs or Digital-to-Analog
Converters (DACs). Regardless of the abstraction level, [9]
recommends an efficient Monte Carlo approach for deter-
mining error parameters based on SPICE simulations. Once
determined, these parameters can be integrated into behavioral
models.

However, not only models are required, but also the sur-
rounding testbench, which provides the input stimuli in a
simulative approach. In [10], a method for transferring circuit
diagrams into testbenches for behavioral models is described.
Although the testbench generation is not automated, the
method suggests the reuse of standard behavioral models. This
approach has also been pursued by [8], [11].

A concept for virtual test instruments is described in [12],
which contains specifications for test instruments and ap-
proaches for analyzing test duration and utilization. This idea
is similarly extended in [13], where instrument models are
integrated into a test framework. Furthermore, [14] presents
a pre-silicon verification environment that enables virtual test
development, demonstrating how behavioral models can be
effectively integrated into early validation stages.

Building on these foundations, our work extends the cur-
rent state of research by proposing a framework for virtual
testing that integrates behavioral models with an interface
to test execution environments. Unlike previous approaches,
our framework is designed to be architecture-independent and
incorporates parameterizable error behavior to support test
program validation.

III. ADC BEHAVIORAL MODEL

In this section, we discuss the behavioral approach to
modeling a generic ADC. This model is an example of how
ideal behavioral models can be extended with parameterizable
error effects to represent system components.

A. Ports and Ideal Behavior
The behavioral model of the ADC comprises the inputs

ground (GND) as a general reference for the other voltages,

the positive and negative reference voltage, the to be converted
analog voltage input and an input for the digital clock. When a
rising edge of the clock signal is detected, the ADC performs
a conversion of the analog input voltage. The resulting digital
output code is determined by the position of the input voltage
relative to the interval defined by the reference voltages.

B. Parameterizable Errors

To increase the realism of the model, we introduce pa-
rameterizable errors that are commonly observed in ADCs.
These errors already mentioned in Section II-B (offset and
gain errors, DNL, INL, and missing codes), are adjustable
by parameters that define maximum error limits. Within these
limits, errors are integrated randomly during the simulation of
the model. By including these errors in the model, we can
simulate the effects of real errors on ADC performance and
then utilize them in the validation of the test program.

C. Additional useful Parameters

In addition to the error parameters, the model considers the
propagation time for input and output signals as well as the
bit width of the ADC. While the propagation time parameters
enable a more precise representation of the time behavior, the
bit width parameter can be used to adjust the resolution of the
ADC.

IV. THE FRAMEWORK

Throughout this section, we present our framework for
virtual testing using parametrizable behavioral models. In
Figure 2, the schematic structure of the framework is shown.
In the following, the individual components are described in
further detail.

A. Standardized Model Wrapper

In order to integrate the generic behavioral models written
in Verilog-AMS into the framework, a wrapper approach was
chosen. Even if it does not achieve the full flexibility of a
parser for Verilog-AMS files, the standardized structure of
the wrapper provides an optimal structure for template-based
integration.

Each wrapper holds a list of the parameters that exist in
the associated behavioral model. In addition, there is another
list with all ports including their properties, such as signal
type, bus width and also the information on whether it is
an input, output or inout. Both the parameters and the port
information can be accessed via an interface to the automated
testbench generation, which also allows the creation of the
model instance code.

B. Standardized Input Source Models

Based on the considerations on test instruments from [13],
we propose parameterizable standard input sources. For digital
input sources we suggest a clock module, a heaviside step
function and module for freely adjustable sequences of values.
Similar functionalities are also required for analog voltage
sources. In addition to an ordinary DC voltage source, it is
also practical to include a ramp and sine function.
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Fig. 2. The schematic of our virtual testing framework with parametrizable behavioral models of AMS circuits, tester instruments and loadboard.

Furthermore, we recommend a programmable source mod-
ule that follows a sequence of voltage values based on
timestamp-voltage pairs. Three different variations of a pro-
grammable source module were implemented (see Figure 3):
In hard step mode, the voltages to be applied are set imme-
diately. In the case of linear transitions, the voltage source
interprets the timestamp-voltage pairs as points along a con-
tinuous linear function. This results in straight-line segments
connecting adjacent points, forming linear voltage curves. The
third mode considers the last voltage value in time as the
target value. Taking into account a parameterizable maximum
slope value, the voltage source strives for this target value.
As the adjustable timestamp-voltage pairs can not be set via
parameters due to their varying number, a slightly modified
wrapper approach was used here, in which the Verilog-AMS
code is generated at runtime allowing all points to be included.

C. Output Measurement Models

Similar to the input sources, it likewise seems practical to
design the measurement instruments as models. The different
properties of the measurement instruments are described with
parameters within a standard model. In this case, it is not yet
absolutely clear whether the measurement instruments will be
completely implemented as behavioral models in Verilog-AMS
and added to the testbench. Alternatively, the desired sampling
behavior can be imitated afterwards with the help of data

post-processing algorithms. A consideration of the different
approaches is discussed later in Figure 8.

D. Automatic Testbench Generation

For the automatic testbench generation, the instances of
the model wrappers including the individual parameters are
required. After the wrapper instances have been referenced in
lists using commands, they can be connected to each other via
their ports. Initially, these are stored as one-to-one connections,
but they are merged to nets when the automatic testbench
generation is performed. During this merging process, all
connected ports are checked for signal type and bus width
compatibility. As part of the testbench code generation, signals
corresponding to the identified nets are automatically gener-
ated and named.

Moreover, the instances of the Verilog-AMS modules are in-
serted with the previously specified parameters and connected
to the generated signals. With the signal patterns embedded
inside the standardized input source models, any signal pattern
descriptions in the testbench can be avoided.

In addition to the integration of the CUT behavioral models
and the input sources, models of loadboard signal transmission
lines and sockets can also be incorporated into the testbench
generation. When configuring the signal transmission lines and
sockets, it is possible to either parameterize them individually
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for each connection, or to use a universal parameterization for
automatic placement for every connection.

E. Simulation Interface

The simulation interface serves as a link between the frame-
work components described previously and external Verilog-
AMS simulators. As the available simulators differ in usage,
this component is to be tailored to the chosen simulator and
provide the required files in addition to the according CLI
commands. The Siemens Questa ADMS simulator was used
in the work presented here.

In the required files, information such as simulator accuracy,
simulated time, and the signals to be recorded must be defined.
Since signals are generated as part of the automatic testbench
generation and are therefore not known by name, the ports
to be observed are passed to the simulation interface. The
necessary signal associated with the port is then identified
automatically.

Once the simulation has been carried out, the interface is
also used to read in the resulting data and convert it into table
form for handover to the test program execution environment.
During this process, the previously performed mapping of
ports to signals is taken into account so that referencing via
the ports is possible.

F. Data Post-Processing

After the simulation results have been received and parsed
by the simulation interface, further post-processing is neces-
sary. As the simulator only outputs values based on event
triggers or on value changes, the data points are unevenly
distributed over time. In comparison with real measurement

instruments, which sample the signals at a fixed clock fre-
quency, this uneven distribution leads to incompatibility issues
in the test execution environment. For this reason, artificial
sampling is implemented in the framework, simulating the
sampling process of real measurement instruments. Based on
a parameterizable sampling frequency, the simulation data
is filled in for missing time points: In the case of digital
signals, the last known value is repeated. For analog signals,
interpolation is performed between the known values. All
simulation data points lying between two artificial sampling
points are subsequently removed.

G. Application

In order to connect the presented framework to a test
execution environment, we plan to use parsers for file transfers.
In form of a standardized data exchange format, all parame-
terizations of the test instruments and the CUT as well as the
netlist describing the connections should be included. Such a
data file allows all subsequent steps to be carried out fully
automated using the previously described components.

V. EXPERIMENTAL RESULTS

The ADC model described in Section III is used in this
section as a representative example of a behavioral CUT
model and thus serves as the basis for the provided simulation
results. Since the ideal behaviour provides the foundation for
the applied parameterizable errors, the simulation results of
an ideal, error-free 8-bit ADC with a voltage ramp as input
are shown in Figure 4. Its ideal behavior with steps of equal
width are visible. Due to the high number of steps in an 8bit
ADC, the resolution is subsequently reduced in order to better
visualize the error effects.

Compared to the ideal behavior, the simulation results show
the desired erroneous behavior (see Figure 5) when the gain
and offset errors are introduced via the wrapper of the ADC
model.

The important error effects DNL and thus INL, as well as
missing codes can also be set and observed (see Figure 6).
Not only can the individual shifted code edges be seen, which
lead to different step widths, but also a missing code in the
case of code number seven.

Our transmission line models are based on the behavior
of passive electrical components, providing a more accurate
representation of signal propagation. In the simulation results
(see Figure 7), these effects can be observed.

Finally, the two approaches for replicating the behavior
of the tester measurement instruments were evaluated. In
particular, the focus lies on obtaining a uniformly sampled
output signal. Figure 8 shows both the simulation results of the
integrated model approach in Verilog-AMS and pure data post-
processing using artificial sampling. It is evident that the data
post-processing works as desired, while the integrated behavior
model approach, which was implemented using a sample
and hold element, provides additional undesirable samples.
Although all points where the internal clock of the sample and
hold element caused the simulator to record a measurement are
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correct, the unwanted additional points are caused by events
triggered by other components in the simulation. We therefore
recommend using data post-processing to emulate the sam-
pling and employing a behavioral model in the simulation
to address other circuit-related effects of the measurement
equipment.

All results were obtained with simulations carried out en-
tirely using the presented framework. For this purpose, only
the parameter values and connections between the standard
components were specified. The testbench generation, simu-
lator control, and data transfer as well as simulation result
retrieval were executed fully automated.

VI. CONCLUSION

In this paper, we have demonstrated a behavioral model-
based approach to the simulation of analog mixed-signal
circuits with parameterizable errors for validating of test
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programs. For this purpose, a virtual test framework was pre-
sented that allows generic behavioral models to be integrated
and typical tester instruments to be simulated automatically.
The key components of the framework include standardized
model wrappers for behavioral models, standardized input
sources, automatic testbench generation, simulation interfaces
and data post-processing. Combined, these components enable
a seamless integration of parameterizable generic behavioral
models into the virtual test environment and allow a simulative
validation process of test programs. The functionality of this
framework in simulating the behavior of AMS circuits was
demonstrated by the experimental results presented. In this
context, the ideal and the erroneous behavior of an ADC
simulated with the framework was shown as an example.
Additionally, the incorporation of signal transmission line
properties based on an behavioral model was demonstrated
as part of the automatic testbench generation.

By providing a standardized and automated approach for
virtual testing within this framework, significant advantages
are offered compared to the conventional test program de-
velopment process. Test engineers can validate test programs
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more efficiently, reducing reliance on physical chips and accel-
erating the overall test development process. As semiconductor
technologies continue to advance, we expect such virtual test
frameworks to have a significant impact on test program
validation times, thereby playing a major role in ensuring the
reliability and performance of integrated circuits.
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