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I. INTRODUCTION

The design of advanced ASICs necessitates the abandon-
ment of pessimistic safety margins. In order to ensure reli-
ability across a range of process corners, temperature areas,
and silicon aging states, there is a need for intelligent methods
for testing and reliability. This work investigates the potential
for optimizing a chip’s performance throughout its lifecycle
using on-chip sensors and edge computation as part of the
Graduate School Intelligent Methods for Test and Reliability
[1]. The efficacy of our methods is evaluated through their
application to the graduate school’s ASICs. Initially, the Time-
to-digital converter and the Temperature-to-digital converter
were selected as the primary use cases. These two ASICs
possess multiple tuning parameters, which can be used to
optimize the chip’s performance. To this end, optimization
techniques are employed to identify a parameter set that
ensures reliable performance across different process corners,
temperature ranges, and aging states.

II. USE CASES

The graduate school’s ASICs are based on Global
Foundries’ 22-nm fully depleted silicon-on-insulator (FD-SOI)
technology. A distinctive feature of FD-SOI technology is its
capacity to use body biasing for performance enhancements.
To this end, a tuning voltage VBB can be applied to the body
of a transistor, thereby affecting its operational characteristics,
such as switching speed and leakage. Forward biasing
(NMOS: VBB > VS , PMOS: VBB < VS , where VS is the
transistor’s source voltage) increases the switching speed but
also the leakage, while reverse biasing (NMOS: VBB < VS ,
PMOS: VBB > VS) lowers switching speed as well as leakage.

A. Time-to-Digital Converter

The Time-to-Digital Converter (TDC) measures the time
difference between an event and the next rising clock edge.

This work is funded by Advantest as part of the Graduate School Intelligent
Methods for Test and Reliability (GS-IMTR) at the University of Stuttgart.

This measurement principle is also known as time tagging. To
this end, the TDC uses delay lines as its basic building block.
A delay line consists of a number of delay elements, such as
inverters, which delay a given signal by a defined amount of
time. By counting the number of delay elements, the signal
edge propagates before the arrival of the next clock edge, a
coarse estimate of the time tag can be obtained. A more precise
measurement of the time tag is then obtained by passing the
residue of the coarse conversion to a Vernier TDC, whose
operating principle relies on the propagation difference of the
signal through two delay lines with nominally different delays.
For optimum performance and robustness against process,
voltage and temperature (PVT) variations, the coarse delay
line, the residue generation and the Vernier delay line have
to be adjustable. We can control the performance of the TDC
by adjusting the supply voltages and body bias voltages for
PMOS and NMOS devices separately. In total, nine supply
voltages and six body bias voltages define our parameter space
for optimization.

B. Temperature-to-Digital Converter and Aging Sensor

The temperature-to-digital converter measures the temper-
ature using the PTAT (proportional to absolute temperature)
measurement principle. In addition to the temperature sensor,
the same ASIC contains an aging sensor implemented as a
ring oscillator. The temperature and aging sensors allow us
to perform on-chip aging and temperature compensation. To
compensate for the detected changes and to ensure reliable
performance of the ASIC, several tuning parameters are avail-
able, including supply and body bias voltages.

III. METHODS

In order to enhance the performance of the chip, we employ
efficient computational methodologies that can be executed
on the edge using a field-programmable gate array (FPGA)
development board. The FPGA development board performs
the computations and manages communication via the high-
speed, low-voltage differential signaling (LVDS) interface with
the TDC. Edge computation and high-speed communication
reduce the latency of each optimization iteration and ensure
data privacy. In a subsequent ASIC version, the hardware for



computation could be incorporated into the ASIC based on the
developed FPGA prototypes.

A. Hyperdimensional Computing

Hyperdimensional Computing (HDC) [2] is a computational
approach inspired by the human brain that utilizes elementary
operations, such as the XOR and majority vote, to efficiently
learn from limited data [3]. Consequently, HDC holds sig-
nificant potential for edge and on-chip computations. For the
specified optimization task, Reinforcement Learning (RL) is
particularly interesting due to its ability to learn optimiza-
tion policies through interactions. HDC-based Reinforcement
Learning (RL) algorithms exhibit efficiency while maintaining
high performance [4].

B. Surrogate Modeling

In the context of model-based optimization techniques,
surrogate models serve as simplified versions of the underlying
system (i.e., the ASIC) to direct the optimization algorithm
towards the desired regions within the search space. These sur-
rogate models can be defined probabilistically, which entails
the calculation of an uncertainty measure for each data point.
By selecting the subsequent parameter combination within the
search space in a manner that identifies a region of elevated
uncertainty, we can promote the exploration of the search
space while concurrently executing the optimization process.

The objective is to gather data from laboratory measure-
ments for the specified use cases outlined in Section II.
These datasets will subsequently be employed for surrogate
modeling. A strategy for data acquisition entails the selection
of new sample points in a manner that maximizes the acquired
information. In addition to laboratory measurements, simula-
tion data collected during the ASIC’s design phase can be
utilized for surrogate modeling. This approach is particularly
compelling because it does not necessitate a dedicated data
collection step and the surrogate model can already describe
regions that are more likely to contain an optimum for the
given optimization problem.

IV. OUTLOOK

This work is in its early stage. Future work includes the
publication of measurement results as well as results from
optimization experiments using edge computation. Of special
interest is the comparison of different optimization techniques
with respect to the speed, the performance of the found
solution, and the computational effort.
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