
Low Overhead SW-based HW Fault Tolerance for
tinyML and Security Applications

D. Mueller-Gritschneder*, Johannes Kappes*, Johannes Geier**

* TU Wien

** TU Munich

Computing Trends: Advanced Driving Functions

Hardware view:
➢ Migration from Distributed, Domain to Zone.

➢ Few very powerful compute platforms.

➢ Embedded HPC

Software View

➢ Rising number of SW functions on same platform

➢ Rising number of AI-based workloads.

Safety-critical real-time system

➢ Real-time constraints / deadlines.

➢ Functional safe and secure.

2

https://www.benzinsider.com/2015/01/car-future-smartphone-wheels/

CNNs, Transformers,

SSM (MAMBA)

3

Computing Trend
tinyML

• Gesture Recognition

Gesture Recognition

with Radar Sensor

Running NN inference on low-power micro-controllers / IoT Devices

• Audio: Keyword Spotting (KWS) / Audio Wakeup

• Vision: Video Wakeup (Face Detection)

• Radar: Gesture Recognition

• Accelerometer: Activity Detection

https://www.informationweek.com/data-management/the-future-of-ai-is-tiny/

https://www.abiresearch.com/press/tinyml-device-shipments-grow-25-billion-2030-15-million-2020/

Platform: Infineon XMC1302 MCU
32 MHz Micro-controller CPU
32 kB Flash, 16 kB RAM

tinyML App

https://philab.esa.int/world-breakthrough-in-onboard-ai-model-training-

presented-by-%CF%86-lab-at-igarss/

Soft Errors got new Attention in Recent Years

4

https://www.nytimes.com/2022/02/07/technology/computer-chips-errors.html

➢ Two studies by META and Google:

• Dixit et al. “Silent Data Corruptions at Scale.”, ArXiv abs/2102.11245 (2021)

• Hochschild et. al. „Cores that don‘t count“, HotOS ’21, https://sigops.org/s/conferences/hotos/2021/papers/hotos21-

s01-hochschild.pdf

➢ Higher-than-expected SDC rates observed in datacenter CPUs (test escapes, T>0 defects)

➢ Possible upcoming challenge as Embedded AI chips move into advanced technology nodes for driving

autonomous functions

https://www.nytimes.com/2022/02/07/technology/computer-chips-errors.html
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf

Functional Safety Aspects for AI

■ ISO/PAS 21448

• Safety of the Intended Functionality (SOTIF) -
Situational awareness: Outlier objects,
undiscovered scenes,…

➢ Algorithmic Safety Techniques:
Plausibility, Fallback, etc.

■ ISO 26262

• Systematic faults during development („bugs“)

➢ Safety Design Flow, Verification

• Safety in the presence of random HW faults

➢ Fault Tolerance (ASIL level A-D)
Error detection, handling, recovery, correction

Bit Flip at

Circuit Level

Radiation-

induced

Soft Errors

Corruption of

computation

for(i=0;i<n;i++){

sum+=c[i]*b[i];

}

WriteREG(sum,Addr);

‘0’ → ‘1’

sum=64 → sum=65600

If undetected:

Silent data corruption (SDC)

5

Defect-based

Soft Errors

Exploration of Fault Tolerance for AI Workloads

6

Neural

Architecture Search

Bigger

NN
NN NN_bigger

HW Architecture

Lock-step, dual-lock-step

Rad-hard

DMR,TMR

ECC, Parity

Core

Checker

Core
dt

dt

Split Compare

error

Deployment

ML Compiler

Algorithm-based Fault Tolerance (ABFT)

SW-implemented HW Fault Tolerance (SIHFT) NN_fault-tolerant

error

Task

Planning

Redundant Execution

(DMR/TMR)
Core A2

time

Core A1 Vote /AvgNN1 v1

NN1v3NN1 v2

Training
Fault-Tolerant

NN Training
NN NN_fault_resilient

>2x

>2x

Overheads

?

?

?

➢ Differential FEEC : Speed up Fault Injection at RTL

➢ SIHFT: REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for
Safety and Security Apps

➢ ABFT: Fault Tolerance for tinyML Apps at Kernel Level and Graph
Level

7

Works

• (Dynamic) Cooldown: Accelerate post-FI​

• Early Exit, e.g., masking checks

• Mixed-level cool-down [11,19]​

(switch-up abstraction)​

• Requires switching simulation

2. Related Work

8

Target: Run FI as fast as possible to cover

many error scenarios:

Accelerating Fault Injection

Simulations

ISS

2x

?x

simulation time

RTL Cooldown

Checkpoint

Fault Inject
• Warm-up: Accelerate pre-FI​

• Checkpoint Restore Boot (CRB) [17,18,19]​

• High level warm-up (switch-down) [11,19]
masked

simulation time

Boot RTL Cooldown

Fault Inject

Idea:

“If the states of two experiments are equal,

their outcome will be, too”

⚫ Similar to Fault Pruning:

→ Omit experiments with known outcome

→ Without prior analysis (use database)

⚫ Simulation State of experiment a at time

⚫ Outcome of experiment

⚫ FEEC:

Challenges:

Storage/Trace:

⚫ Simulation states (traces)

⚫ Many experiments

Equivalence Checks:

⚫ Costly (bit-wise comparison)

Solution: Hash States for FEEC

⚫ Reduces Storage to 64-bit per

experiment state

⚫ Hash not reversible (state info is lost)

𝐻 µ𝑡
𝑎 = 𝐻 µ𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

µ𝑡
𝑎 = µ𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

µ𝑡
𝑎

𝑎 𝑡

𝑎𝑜𝑎

9

Fault Effect Equivalence Check (FEEC)

FEEC: Differential Checks

10

Idea:

“If the states of two experiments are equal, so are

their deviations to another common experiment

– at the same point in time”

⚫ Similar to Masking Checks:

➔ Compute Diff vs. Reference

➔ If Diff is 0 fault masked

⚫ (Differential) FEEC:

Challenges:

Storage:

⚫ Diffs are quite cheap to store

(sparse matrix)

⚫ Are reversible with Reference states

Equivalence Checks:

⚫ Costly (bit-wise comparison)

⚫ Many Experiments

Solution: Hash Diff FEEC

⚫ Reduces experiment storage to 64-bit

⚫ Re-use checkpoints for reference

𝐻 𝑡, 𝛿𝑡
𝑎 = 𝐻 𝑡, 𝛿𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

⇔ µ𝑡
𝑎 = µ𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

𝛿𝑡
𝑎 = 𝛿𝑡

𝑏

⇔ µ𝑡
𝑎 ⊕µ𝑡

𝑅 = µ𝑡
𝑏 ⊕µ𝑡

𝑅

𝛿𝑡
𝑎 = µ𝑡

𝑎 ⊕µ𝑡
𝑅

𝛿𝑡
𝑎 = 0 ⇒ µ𝑡

𝑎 = µ𝑡
𝑅

Checkpoint Differentials

11

Leveraging existing Checkpoints:

1) Prepare FI Campaign

⚫ Record Checkpoints

1) Execute FI Campaign

⚫ Use Checkpoints to boot as close as

possible to FI

⚫ Compute Diffs at next checkpoint

⚫ Perform FEEC with Diff-Hashes

⚫ Store Diffs if no FEEC match

ISS

simulation time

RTL Cooldown

Checkpoint

Fault Inject

masked

Error seen before
at this time of sim.

Regular checkpoints

6. Experimental Setup

12

Evaluating Performance and Accuracy

1) Framework:

⚫ Open-source RTL FI Simulator (Verilator based: vrtlmod)

⚫ Automatically add Differential FI API

⚫ “Black-box” DUT principle

⚫ DUT: CV32E40P RISC-V CPU [28,29]

2) Campaign:

⚫ Single-bit transient FI in CPU micro-architecture

7. Results - Performance

13

Tab.: Performance in average experiment simulation time

in seconds and speed-up factor vs. baseline RTL (×).

Performance: “Accelerated vs. RTL”

1) Checkpoint Restore Boot (CRB):

✓ ~2x → as expected

2) Checkpoint Masking (CMSK):

✓ ~3-4x → Masking Rate ~50% (another 2x)

3) Mixed-level Simulation (MLS):

✓ ~4x → Similar Performance to Masking

4) Checkpoint Diff. FEEC (CDIF+FEEC)

✓ Up to ~25x

✓ Scales with sample size

No accuracy loss, except for MLS due to

different timing of the ISS

➢ Differential FEEC : Speed up Fault Injection at RTL

➢ REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for Safety
and Security Apps

➢ ABFT for tinyML: Fault Tolerance for tinyML Apps at Kernel Level
and Graph Level

14

Agenda

■ Modify given program by inserting logic for detection / handling runtime errors

■ Attractive for embedded systems:

■ Fault Tolerance on Commercial Off-the-shelf HW

■ Flexibility (Selective hardening)

■ At source-code level or at compiler level

15

Software Implemented HW Fault Tolerance

■ To protect control flow integrity

➢ Enumerate basic blocks with unique signature

➢ Update and check run time signature

SIHFT Methods: Runtime Signature Moitoring

Method Covered Errors

CFCSS [Oh, 2002] Illegal inter block jumps

RASM [Vankeirsbilck, 2017] Illegal inter block jumps; Wrong branch taken

16

addi RTS,RTS,2

li CTS,10

bne RTS,CTS,Berror

…

addi RTS,RTS,25

BEQ X1,X2,B3

addi RTS,RTS,-10

li CTS, 25

bne RTS,CTS,Berror

…

addi RTS,RTS,-20

li CTS, 15

bne RTS,CTS,Berror

…

B1

B2

B3

Intra block CFE: Instr. 1 -> Instr. N in B1

Inter block CFE: Instr. 1 in B1 -> Instr. 2 in B3

■ Data-flow Integrity

■ Duplicate instructions for computational redundancy, Checks placed strategically to ensure

consistency

SIHFT Methods: Instruction Duplication

17

BB1:

(i1) ADD r4, r2, r3

(i1
d) ADD r20, r18, r19

(i2) XOR r6, r4, r7

(i2
d) XOR r22, r20, r23

BNE r6, r22, BBerr

BNE r0, r16, BBerr

(i3) BNE r6, r0, BB3

BB2:

(i4) AND r7, r6, r8

(i4
d) AND r23, r22, r24

(i5) OR r7, r7, r1

(i5
d) OR r23, r23, r17

BNE r4, r20, BBerr

BNE r7, r23, BBerr

(i6) SW 0(r4), r7

(i6
d) SW 0(r20), r23

BB1:

(i1) ADD r4, r2, r3

(i1
d) ADD r20, r18, r19

(i2) XOR r6, r4, r7

(i2
d) XOR r22, r20, r23

(i3) BNE r6, r0, BB3

BB4:

BNE r22, r16, BBerr

BB2:

(i4) AND r7, r6, r8

(i4
d) AND r23, r22, r24

(i5) OR r7, r7, r1

(i5
d) OR r23, r23, r17

(i6) SW 0(r4), r7

LW r7, 0(r20)

BNE r7, r23, BBerr

EDDI [Oh2002] SWIFT [Reis2005] NZDC [Didehban2016]

BB1:

(i1) ADD r4, r2, r3

(i1
d) ADD r20, r18, r19

(i2) XOR r6, r4, r7

(i2
d) XOR r22, r20, r23

BNE r6, r22, BBerr

BNE r0, r16, BBerr

(i3) BNE r6, r0, BB3

BB2:

(i4) AND r7, r6, r8

(i4
d) AND r23, r22, r24

(i5) OR r7, r7, r1

(i5
d) OR r23, r23, r17

BNE r4, r20, BBerr

BNE r7, r23, BBerr

(i6) SW 0(r4), r7

18

REPAIR

BB1:

(i1) ADD r4, r2, r3

(i2) XOR r6, r4, r7

(i1
d) ADD r20, r18, r19

(i2
d) XOR r22, r20, r23

(i3) BNE r6, r0, BB3

BB4:

BNE r22, r16, BBerr

BB2:

(i4) AND r7, r6, r8

(i5) OR r7, r7, r1

(i4
d) AND r23, r22, r24

(i5
d) OR r23, r23, r17

(i6) SW 0(r4), r7

LW r7, 0(r20)

BNE r7, r23, BBerr

NZDC (CR: Coarse grained)

BB1:

(i1) ADD r4, r2, r3

(i2) XOR r6, r4, r7

(i1
d) ADD r31, r18, r19

(i2
d) XOR r30, r31, r23

(i3) BNE r6, r0, BB3

BB4:

BNE r30, r16, BBerr

BB2:

(i4) AND r7, r6, r8

(i5) OR r7, r7, r1

(i4
d) AND r29, r30, r24

(i5
d) OR r28, r29, r17

(i6) SW 0(r4), r7

LW r7, 0(r31)

BNE r7, r28, BBerr

REPAIR [Sharif21]

Dynamic register

pairing between

primary and shadow

computation

More illegal jumps will

be detected by the

instruction duplication

Runtime monitoring

can be removed for

illegal jump detection.

This check will detect illegal

jumps to green instructions

due to Imbalance between

primary and secondary

computation

19

REPAIR vs. SIHFT Evaluation using MiBench

𝑆𝐷𝐶𝑟𝑎𝑡𝑒 =
𝑛𝑜. 𝑜𝑓 𝑆𝐷𝐶𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠
∗ 𝛾

On average, REPAIR performs competitively with state-of-the-art methods

U Sharif, D Mueller-Gritschneder, U Schlichtmann: Repair: Control flow protection based on register pairing updates for sw-implemented

hw fault tolerance, TECS 21

20

REPAIR vs. SIHFT Evaluation using MiBench

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

REPAIR shows better overhead performance than NZDC+RASM on all programs

Security: Instruction Skip Fault Model

➢ E.g. caused by flushes of instruction cache (several instructions skipped in program flow)

➢ Observation: Standard SIHFT techniques are not very efficient to detect instruction skips

CompaS(eC) Compiler-assisted Safety (ecurity Countermeasure)

https://github.com/tum-ei-eda/compas-ft-riscv

➢ Re-combination of several (sub)techniques RTM and Instr. duplication:

“what works best against instruction skip model”

21

CompaSEC

https://github.com/tum-ei-eda/compas-ft-riscv

Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif, and Ulf Schlichtmann. 2023. CompaSeC: A Compiler-Assisted

Security Countermeasure to Address Instruction Skip Fault Attacks on RISC-V. ASP-DAC 23

COMPASEC Results

22

Goal: Boot a malicious software

image bypassing security checks

Tool: ARCHIE [9]: QEMU-based

fault injection simulation

➢ Differential FEEC : Speed up Fault Injection at RTL

➢ REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for Safety
and Security Apps

➢ ABFT for tinyML: Fault Tolerance for tinyML Apps at Kernel Level
and Graph Level

23

Agenda

Algorithm-based Error Detection (ABFT)

24

• ABFT uses checksums to find random errors in linear
algebra operations (e.g. matrix-matrix-multiply) [1]

• NVIDIA: Filter and input fmap checksum (FIC) [2]
➢ Efficient implementation for convolutions

• Less than 2x runtime / energy overhead

■ [1] Huang et al. “Algorithm-based fault tolerance for matrix operations,”
IEEE Transactions on Computers, 1984.

■ [2] Hari et al. “Making convolutions resilient via algorithm-based error
detection techniques,”
IEEE Transactions on Dependable and Secure Computing, 2022.

■ Hand-coded ABFT and SIHFT in ML Kernel for dense, conv, depthwise-conv

■ Integrated in TVM (ML Compiler) for tinyML workloads

➢ Full protection

➢ Selective protection based on

vulnerability analysis

tinyML Flow with ABFT (Kernel-level)

25

Prequantized

NN Model

(Onnx, tflite)

TVM

+

UMA

Inference

Function (.c)

CPU ML

Kernel (.c)

Accelerator

Driver (.c)

Target

Compile
.bin

Simulator

AutoTune

muriscv_nn

Handwritten CPU

Kernels for RISC-V

HW

TARGET

Quantize

& Prune

Floating Point

NN Model

(Onnx)

Exploration of Selective Hardening for AI Workloads

• Three tinyML neural networks :
AWW, VWW, ResNET

• Mixture of instruction duplication and
NVIDIA FIC (ABFT method)

• ISS-level Fault Injection to obtain
SDC rates (RV32 CPU Model)

26

0

2

4

6

8

Unprotected Fully
hardened

Selectively
hardened

Missclassification Rate (%)

0

5

10

15

20

25

Unprotected Fully
hardened

Selectively
hardened

Runtime Overhead (%)

0

20

40

Unprotected Fully
hardened

Selectively
hardened

Silent Data Corruption Rate (%)

19%

AVG.

0,086% 0,79%

0%

21%

9,9%

5,5%

0,0023% 0,0025%

2200x Improvement

U Sharif, D Mueller-Gritschneder, R Stahl, U Schlichtmann Efficient software-implemented hw fault tolerance for tinyml inference in

safety-critical applications, DATE23

■ ABFT and DMR as Graph Transformations

■ Integrated in TVM (ML Compiler) for tinyML workloads

tinyML Flow with ABFT (Graph Level)

27

Prequantized

NN Model

(Onnx, tflite)

TVM

+

UMA

Inference

Function (.c)

CPU ML

Kernel (.c)

Accelerator

Driver (.c)

Target

Compile
.bin ETISS

Simulator

AutoTune

ABFT / DMR

Graph

Transformations

Perf.

Simulator

Quantize

& Prune

Floating Point

NN Model

(Onnx)

Graph-level Transformation for

Conv2D

28

Fault Injection Campaign

29
UPDATED RESULTS: J. Kappes to appear in IJCNN 2025

• Three tinyML neural networks :
AWW, VWW, ResNET

• ISS-level Fault Injection to obtain
SDC rates (RV32 CPU Model)

Performance Impact

30

Exploration of Fault Tolerance for AI Workloads

31

Neural

Architecture Search

Bigger

NN
NN NN_bigger

HW Architecture

Lock-step, dual-lock-step

Rad-hard

DMR,TMR

ECC, Parity

Core

Checker

Core
dt

dt

Split Compare

error

Deployment

ML Compiler

Algorithm-based Fault Tolerance (ABFT)

SW-implemented HW Fault Tolerance (SIHFT) NN_fault-tolerant

error

Task

Planning

Redundant Execution

(DMR/TMR)
Core A2

time

Core A1 Vote /AvgNN1 v1

NN1v3NN1 v2

Training
Fault-Tolerant

NN Training
NN NN_fault_resilient

5%-12% EDC rate

0.0025%-0.045% EDC rate
10-30 % Overhead

Do we want to protect ML workloads?

■ Base accuracy a,

■ Accuracy with Soft Errors: a* ~= a – aloss = a – (EDCrate * SoftErrors / Inference)

■ Accuracy drop can be minimal (PI TIMES THUMB estimation):

32

“10 Gbits of SRAM and an SER of 600 FITs per megabit can experience an error every

170 hours”*

10 inferences / sec, 10% EDCrate: soft error / (170h * 360sec/h * 10 inferences/sec)

aloss = 10% * 1/612 000 = 1,63e-5% (1 in 6 mio inference runs)

*https://pld.ttu.ee/IAF0030/454636.pdf

Using the 10-30% making the model bigger might give you more accuracy than you loose by EDC

But: No detection (monitoring of SDC rates)

■ Contributors

■ Marc Greim

■ Uzair Sharif

■ Rafael Stahl

■ Philipp van Kempen

■ Karsten Emrich

■ Conrad Foik

■ Johannes Geier

■ Leonidas Kontopoulos

■ Jefferson Parker Jones

■ Johannes Kappes

■ …

33

Thanks

Thank you for your attention.

	Folie 1: Low Overhead SW-based HW Fault Tolerance for tinyML and Security Applications
	Folie 2: Computing Trends: Advanced Driving Functions
	Folie 3
	Folie 4: Soft Errors got new Attention in Recent Years
	Folie 5: Functional Safety Aspects for AI
	Folie 6: Exploration of Fault Tolerance for AI Workloads
	Folie 7
	Folie 8: 2. Related Work
	Folie 9: Fault Effect Equivalence Check (FEEC)
	Folie 10: FEEC: Differential Checks
	Folie 11: Checkpoint Differentials
	Folie 12: 6. Experimental Setup
	Folie 13: 7. Results - Performance
	Folie 14
	Folie 15: Software Implemented HW Fault Tolerance
	Folie 16: SIHFT Methods: Runtime Signature Moitoring
	Folie 17: SIHFT Methods: Instruction Duplication
	Folie 18: REPAIR
	Folie 19: REPAIR vs. SIHFT Evaluation using MiBench
	Folie 20: REPAIR vs. SIHFT Evaluation using MiBench
	Folie 21: CompaSEC
	Folie 22: COMPASEC Results
	Folie 23
	Folie 24: Algorithm-based Error Detection (ABFT)
	Folie 25: tinyML Flow with ABFT (Kernel-level)
	Folie 26: Exploration of Selective Hardening for AI Workloads
	Folie 27: tinyML Flow with ABFT (Graph Level)
	Folie 28: Graph-level Transformation for Conv2D
	Folie 29: Fault Injection Campaign
	Folie 30: Performance Impact
	Folie 31: Exploration of Fault Tolerance for AI Workloads
	Folie 32: Do we want to protect ML workloads?
	Folie 33: Thanks
	Folie 34: Thank you for your attention.

