TECHNISCHE
UNIVERSITAT
WIEN

Low Overhead SW-based HW Fault Tolerance for
tinyML and Security Applications

D. Mueller-Gritschneder*, Johannes Kappes®*, Johannes Geier**
*TU Wien
** TU Munich

Computing Trends: Advanced Driving Functions

Hardware view: *—W_K D e
> Migration from Distributed, Domain to Zone. L il
~ Few very powerful compute platforms. oistributed N Pvomain N zone
> Embedded HPC

. CNNs, Transformers,

Software View %DSSM (MAMBA)

> Rising number of SW functions on same platform
» Rising number of Al-based workloads.

Safety-critical real-time system
> Real-time constraints / deadlines.
> Functional safe and secure.

Computing Trend
tinyML The Future of Al Is Tiny

Tiny Al reduces carbon footprints, brings deep learning at an affordable cost, creates context-aware

consumer devices, cuts down data infrastructure, bolsters security, and more.
https://www.informationweek.com/data-management/the-future-of-ai-is-tiny/

Running NN inference on low-power micro-controllers / loT Devices

* Audio: Keyword Spotting (KWS) / Audio Wakeup
» Vision: Video Wakeup (Face Detection)

« Radar: Gesture Recognition

« Accelerometer: Activity Detection

Gesture Recognition tinyML App

ﬁ with Radar Sensor #

https://www.abiresearch.com/press/tinyml-device-shipments-grow-25-billion-2030-15-million-2020/

AUGUST 07, 2023

World breakthrough in onboard AI
model training presented by ®-lab at

= . ¢ . "‘
— ‘_‘\‘\i‘»\: % 3
. \ :Q“\\ h ;v - SE!
@Q\;\\\ ﬂ o = —
\«\@ f ~—— o /;/ S
% -~ Platform: Infineon XMC1302 MCUF%
e . e 4 .
=== -
§\ 32 MHz Micro controller CPU https://philab.esa.int/world-breakthrough-in-onboard-ai-model-training-
= 32 kB Flash 16 kB RAM presented-by-%CF %86-lab-at-igarss/

Soft Errors got new Attention in Recent Years

https://www.nytimes.com/2022/02/07/technology/computer-chips-errors.html

NEWSCientiSt (sanin) () Ehe New Nork Times

News Features Newsletters Podcasts Video Comment Culture Crosswords | This week's magazine

Health Space Physics Technology Environment Mind Humans Life Mathematics Chemistry Earth Saociety

Technology
Google and Facebook hit by faulty chips Tiny Chips, Big Headaches
that can Silently COl‘l‘llpt data As the largest computer networks continue to grow, some

By Matthew Sparkes

engineers fear that their smallest components could prove to be
B 17 June 2021

an Achilles’ heel.

» Two studies by META and Google:
» Dixit et al. “Silent Data Corruptions at Scale.”, ArXiv abs/2102.11245 (2021)

 Hochschild et. al. ,,COI’ es that don't count “, HotOS ’27, https.//sigops.org/s/conferences/hotos/2021/papers/hotos21-
s01-hochschild.pdf

» Higher-than-expected SDC rates observed in datacenter CPUs (test escapes, T>0 defects)

» Possible upcoming challenge as Embedded Al chips move into advanced technology nodes for driving
autonomous functions

https://www.nytimes.com/2022/02/07/technology/computer-chips-errors.html
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf

Functional Safety Aspects for Al

If undetected:
Silent data corruption (SDC)

m ISO/PAS 21448

- Safety of the Intended Functionality (SOTIF) - P T—
Situational awareness: Outlier objects, x| Corruption of
undiscovered scenes,... } computation

. . . WriteREG (sum, Addr) ;
> Algorithmic Safety Techniques:
Plausibility, Fallback, etc.

sum=64 — sum=65600

b Bit Flip at
'i-_i!q Circuit Level

= 1ISO 26262 |
- Systematic faults during development (,bugs®)
> Safety Design Flow, Verification

- Safety in the presence of random HW faults Radiation-

> Fault Tolerance (ASIL level A-D) gdfltlcl:zed
Error detection, handling, recovery, correction oft Errors

Defect-based
Soft Errors

Exploration of Fault Tolerance for Al Workloads

Architecture Search NN :
NN Training
Task Redundant Execution Core A1 -—'—’- S2x
" time
- error
Deployment Algorithm-based Fault Tolerance (ABFT) 5
ML Compiler SW-implemented HW Fault Tolerance (SIHFT) @@ .

error

Lock-step, dual-lock-step
Rad-hard
HW Architect

ECC, Parity Core

Overheads

Works

> Differential FEEC : Speed up Fault Injection at RTL

> SIHFT: REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for
Safety and Security Apps

> ABFT: Fault Tolerance for tinyML Apps at Kernel Level and Graph
Level

Accelerating Fault Injection Fault Inject \

Simulations

] simulation time
Target: Run FI as fast as possible to cover
many error scenarios:

« Warm-up: Accelerate pre-Fl ——
« Checkpoint Restore Boot (CRB) [17,18,19] - 2y RN
« High level warm-up (switch-down) [11,19]

masked
* (Dynamic) Cooldown: Accelerate post-FI Checkpoint
- Early Exit, e.g., masking checks .B
+ Mixed-level cool-down [11,19] - X ——mm -
(switch-up abstraction) TR -
simuiation time

* Requires switching simulation /

Fault Effect Equivalence Check (FEEC)

Idea: Challenges:
“If the states of two experiments are equal, Storage/Trace:
their outcome will be, too” . Simulation states (traces)

. Many experiments
. Similar to Fault Pruning:

— Omit experiments with known outcome

. . , Equivalence Checks:
— Without prior analysis (use database)

o Costly (bit-wise comparison)

. H? Simulation State of experiment a attime t Solution: Hash States for FEEC

_ b _ b
. 0% Outcome of experiment @ H(py) = H(“t) = 0% =0

a b a) « Reduces Storage to 64-bit per
- FEEC. Ui =Wl =07 =0 experiment state
« Hash not reversible (state info is lost)

FEEC: Differential Checks

Idea: Challenges:

“If the states of two experiments are equal, so are Storage:

their deviations to another common experiment « Diffs are quite cheap to store
— at the same point in time” (sparse matrix)

. Are reversible with Reference states
. Similar to Masking Checks:

> Compute Diff vs. Reference §& = p¢ @ pf Equivalence Checks:
« Costly (bit-wise comparison)

> If Diff is 0 fault masked 62 = 0 = pf = pf » Many Experiments
Solution: Hash Diff FEEC

H(t,68) = H(t,6?) = 0% = 0P

a R _ /b R
S He D e = Ke O Ky « Reduces experiment storage to 64-bit
b « Re-use checkpoints for reference

. (Differential) FEEC: §& = &7

a _ ,,b a —
S U =l 0" =0

Checkpoint Differentials

Leveraging existing Checkpoints:

1) Prepare FI Campaign

Regular checkpoints

Fault Inject

« Record Checkpoints

masked

1) Execute FI Campaign

Error seen before
at this time of sim.

Checkpoint

« Use Checkpoints to boot as close as
possible to Fl |

RTL Cooldown

simula’tion tirr{e

. Compute Diffs at next checkpoint

. Perform FEEC with Diff-Hashes

. Store Diffs if no FEEC match

Evaluating Performance and Accuracy

1) Framework:

« Open-source RTL FI Simulator (Verilator based: vrtimod)
. Automatically add Differential FI API
. ‘Black-box” DUT principle

. DUT: CV32E40P RISC-V CPU [28,29]

2) Campaign:
« Single-bit transient FI in CPU micro-architecture

Performance: “Accelerated vs. RTL”

p= |N| : 10,000 100,000 1,000,000
simulator M 7[s] X 18] X 4[] X
1) Checkpoint Restore Boot (CRB): RTL 074 - o7 i
v ~2X — as expected CRB é 0.55 1.3 055 1.3
. . CMSK , 0.47 1.6..-049 1.5
2) Checkpoint Masking (CMSK): MLS S 060 T12 060 12 060 ~12
v ~3-4x — Masking Rate ~50% (another 2x) CDIF+FEEC 047 1.6~ 039 19 040 | ~18
3) Mixed-level Simulation (MLS): RTL g 117 - 116 -
. . . CRB I~ 6.1 1.9 6.1 1.9
v’ ~4x — Similar Performance to Masking CMSK 2 37 3238 30
4) Checkpoint Diff. FEEC (CDIF+FEEC) MLS B 30 o 3.0 b
CDIF+FEEC <= 3.1 3.8 1.5 7.6 1.0 ~11
v Up to ~25x
.) RTL o 299 - 274 -
v' Scales with sample S|Ze CRB o 150 20 150 1.8
CMSK S 7.7 3.9 8.1 34
MLS e 6.6 4.5 6.8 4.0
CDIF+FEEC 2 5.9 5.1 24 11 1.3 ~21
No accuracy loss, except for MLS due to RTL , 656 - 639 -
H H—. CRB H 33.2 2.0 334 1.9
different timing of the ISS CMSK 8 Tez 39173 37
MLS 4 14.2 4.6 14.2 4.5
CDIF+FEEC = 12.8 5.1 5.0 128 2.53 ~25

Tab.: Performance in average experiment simulation time
in seconds and speed-up factor vs. baseline RTL (x).

Agenda

> Differential FEEC : Speed up Fault Injection at RTL

> REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for Safety
and Security Apps

> ABFT for tinyML: Fault Tolerance for tinyML Apps at Kernel Level
and Graph Level

Software Implemented HW Fault Tolerance

= Modify given program by inserting logic for detection / handling runtime errors

m Attractive for embedded systems:
m Fault Tolerance on Commercial Off-the-shelf HW
m Flexibility (Selective hardening)

m At source-code level or at compiler level

SIHFT Methods: Runtime Signature Moitoring

m To protect control flow integrity

B1 | addi RTS,RTS,2 _ _ _ .
i CTS,10 » Enumerate basic blocks with unique signature
bne RTS,CTS,Berror

» Update and check run time signature
addi RTS,RTS,25

BEQ X1,X2,B3
Y Method Covered Errors
B2 ﬁ‘g’Tig’TzséRTS"m CFCSS [Oh, 2002] lllegal inter block jumps
bne RTS,CTS,Berror RASM [Vankeirsbilck, 2017] lllegal inter block jumps; Wrong branch taken
! Intra block CFE: Instr. 1 -> Instr. N in B1
B3 | addi RTS,RTS,-20 Inter block CFE: Instr. 1 in B1 -> Instr. 2 in B3
li CTS, 15

bne RTS,CTS,Berror

SIHFT Methods: Instruction Duplication

m Data-flow Integrity

m Duplicate instructions for computational redundancy, Checks placed strategically to ensure

consistency
EDDI [Oh2002]

SWIFT [Reis2005]

NZDC [Didehban2016]

(i4)
(i19)
(i2)
(i2)

(i3)

(i4)
(is%)
(is)
(is)

(is)

i.d

BB,:

BB,:

ADD r4,r2,r3

ADD r20, r18, r19
XOR 6, 14, r7

XOR r22, r20, r23
BNE r6, r22, BB,
BNE r0O, r16, BB
BNE r6, r0, BB,

err

AND r7, r6, r8
AND r23, r22, r24
OR 7,17, 11

OR r23,r23, r17
BNE r4, r20, BB,
BNE r7, r23, BB,
SW 0(rd), r7

SW 0(r20), r23

BB,:

(i4)
(i)
(iz)
(i)

(i3)

BB,:

(i4)
(i)
(is)
(is)

(is)

ADD r4,r2,r3

ADD r20, r18, r19
XOR6,r4, r7

XOR r22, r20, r23
BNE r6, r22, BB,
BNE r0O, r16, BB
BNE r6, r0, BB,

err

AND r7, r6, r8
AND r23, r22, r24
OR r7,r7,11
OR r23,r23, r17
BNE r4, r20, BB,,,
BNE r7, r23, BB,,,
SW 0(r4), r7

BB,:

(i4)
(i)
(iz)
(i)
(i3)

BB,:

BB,:

(i4)
(i)
(is)
(is)
(i)

ADD r4,r2,r3
ADD r20, r18, r19
XOR 6, 14, r7
XOR r22, r20, r23
BNE r6, r0, BB,

BNE r22, r16, BB,,,
AND r7, r6, r8

AND r23, r22, r24
OR r7,r7,11

OR r23,r23,r17
SW 0(rd), r7

LW r7, 0(r20)
BNE r7, r23, BB,

REPAIR

NZDC (CR: Coarse grained)

his check will detect illegal
jumps to green instructions

due to Imbalance between
primary and secondary
computation

ADDr4,r2,r3
XOR 6, r4, r7
ADD r20, r18, r19
XOR r22, r20, r23
BNE r6, r0, BB,

BNE r22, r16, BB,

AND r7, r6, r8

OR r7,r7,r1
AND r23, r22, r24
OR 1r23,r23, r17
SW 0(rd), r7

LW r7, 0(r20)
BNE r7, r23, BB,

REPAIR [Sharif21]
BB,:
(i4) ADD r4,r2,r3
(i) XOR 6, r4, r7

(i19)
(i2%)
(i3)

BB,:

BB,:

(i4)
(is)
(i5%)
(is)
(i)

ADD r31,r18, r19
XOR r30, r31, r23
BNE r6, r0, BB,

BNE r30, r16, BB,

AND r7, r6, r8

OR r7,r7,r1
AND r29, r30, r24
OR r28, r29, r17
SW 0(rd), r7

LW r7, 0(r31)
BNE r7, r28, BB,

Dynamic register
pairing between
primary and shadow
computation

More illegal jumps will
be detected by the
instruction duplication

Runtime monitoring
can be removed for
illegal jump detection.

REPAIR vs. SIHFT Evaluation using MiBench

no.of SDCs
SDCrate = ; Y
total no.of trials
SDC-rate mnzdc_cgs Mnzdc_cgs Mnzdc_cgs
o +rasm + repair

0.14
0.12
0.1

® 0.0

0.0
0.0
o]TTT I I
0 |
cre sS dij aes bf sha bm qs fft bc avg

On average, REPAIR performs competitively with state-of-the-art methods

[e5]

[=)]

=

]

U Sharif, D Mueller-Gritschneder, U Schlichtmann: Repair: Control flow protection based on register pairing updates for sw-implemented

hw fault tolerance, TECS 21

REPAIR vs. SIHFT Evaluation using MiBench

(runtime — baseline)

overhead = -
baseline

Runtime Overhead

300.00
250.00

200.00

® 150.00
100.00

50.00 I I I I I
0.00

Wnzdc_cgs Mnzdc_cgs M nzdc_cgs
+rasm + repair

REPAIR shows better overhead performance than NZDC+RASM on all programs

CompaSEC

Security: Instruction Skip Fault Model
> E.g. caused by flushes of instruction cache (several instructions skipped in program flow)
> Observation: Standard SIHFT techniques are not very efficient to detect instruction skips

CompaS(eC) Compiler-assisted Safety (ecurity Countermeasure)

https://qgithub.com/tum-ei-eda/compas-ft-riscv

» Re-combination of several (sub)techniques RTM and Instr. duplication:
“‘what works best against instruction skip model”

https://github.com/tum-ei-eda/compas-ft-riscv

COMPASEC Results

175 g Instruction skip | Goal: Boot a malicious software

A . mEm single | image bypassing security checks
[double

primn R S BN triple | Tool: ARCHIE [9]: QEMU-based

S quadruple fault injection simulation

100+ -1 [] [I
500 484086
75+ -- T - - B - -~ - - S -- - -~ - -~~~ === Combinations
00, =2 RSM B
B DMR
50t 1 1 (et]

Im DMR+RSM
@ CompaSeC

w
o
o

N
o
o

Number of remaining successful attacks

N
o U1

Execution overhead vs. none [%]

z O Rz o ' O @
§§§§$$$@&§§%&§é§é§&§@g o C e A r A D e
< (o 4

© & S & = @ LY TS T o (‘}@ 9 (§§? &S

Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif, and Ulf Schlichtmann. 2023. CompaSeC: A Compiler-Assisted
Security Countermeasure to Address Instruction Skip Fault Attacks on RISC-V. ASP-DAC 23

Agenda

> Differential FEEC : Speed up Fault Injection at RTL

> REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for Safety
and Security Apps

> ABFT for tinyML: Fault Tolerance for tinyML Apps at Kernel Level
and Graph Level

Algorithm-based Error Detection (ABFT)

« ABFT uses checksums to find random errors in linea W --A.-
algebra operations (e.g. matrix-matrix-multiply) [1] EEEN ooaw
NN e -

L[|]|

HEEN
- NVIDIA: Filter and input fmap checksum (FIC) [2]

> Efficient implementation for convolutions

- Less than 2x runtime / energy overhead

HEHuan g et al. “Algorithm-based fault tolerance for matrix operations,”
E Transactions on Computers, 1984.

= [2] Hari et al. "Making convolutions resilient via algorithm-based error
detection techniques,”

IEEE Transactions on Dependable and Secure Computing, 2022.

tinyML Flow with ABFT (Kernel-level)

= Hand-coded ABFT and SIHFT in ML Kernel for dense, conv, depthwise-conv
m Integrated in TVM (ML Compiler) for tinyML workloads
» Full protection

> Selective protection based on

vulnerability analysis muriscv_nn muRISC -NN
Handwritten CPU

Kernels for RISC-V

ol !
: Simulator
Kernel (.c) Compile

Accelerator
Driver (.c)
AutoTune

Inference
Function (.c)

Floating Point : Prequantized
NN Model Quantize NN Model

CPU ML

(Onnx) & Prune (Onny, tflite)

Exploration of Selective Hardening for Al Workloads

« Three tinyML neural networks :
AWW, VWW, ResNET

« Mixture of instruction duplication and

NVIDIA FIC (ABFT method)

- ISS-level Fault Injection to obtain
SDC rates (RV32 CPU Model)

Runtime Overhead (%)
21%
25
20 9,9%
15
R 1
0
Unprotected Fully Selectively
hardened hardened

AVG.

Silent Data Corruption Rate (%)

40 19%
0,086% 0,79%

"

0
Unprotected Fully
hardened

Selectively
hardened

Missclassification Rate (%)
5,5%

8
6
4 0,0023% 0,0025%
2
0
Unprotected Fully Selectively
hardened hardened

2200x Improvement

tinyML Flow with ABFT (Graph Level)

= ABFT and DMR as Graph Transformations
m Integrated in TVM (ML Compiler) for tinyML workloads

ABFT / DMR

Graph
Transformations

3

Floating Point
NN Model

Prequantized

Quantize NN Model
& Prune (Onny, tflite)

AutoTune

(Onnx)

Accelerator
Driver (.c)

Inference
Function (.c)
oPU ML Targgt bi FETISS _ Perf.
Kernel (Compile Simulator | Simulator

Graph-level Transformation for

Conv2D

125 x%5%E

ConvZD

filter E4xlnlxsd;
Bixs (54

1x25x5xE
0 w0

Depthwise Comv(

wights 1x3x3xsd:
b 54

Relu

~ -

.
7 filter-wise .

“ sum
- i

reduced
input

1x25x5x%E r
c",
r

filter E4xlnlxsd;

beias (54
AddBias 5(0)
1%25%5KE
1x1K1xE4
r
whape I
— o e o ABFT BIT
1x64
a) Representation of a
FullyCannactac (a) Representaion of a { g;rapﬁ embedding a (b) Graph (2) after
waights (12254} draph Emﬁ‘:‘:g\gr& ConvzD Conv2D operator applied FIC method
Bias 12
- Fig. 2. ABFT transformation for FIC(dw)
SOTIMax

Identity34 |

Fault Injection Campaign

Configuration BM sample size @ FDR*[%] EDC[%] SDC|%]
BASE 36,730 - - 33.515 +0.483
ABFT % 66,764 ~ 98.3 - 0.267 +0.039
ABFT+DMRIland 69,038 ~ 99.5 - 0.085 £+0.022
BASE = 70,703 - 12.898 +0.247 9.896 +0.220
ABFT = 64,066 ~ 85.9 1.553 +0.096 1.594 +0.097
ABFT+DMRIland < 111,924 ~ 97.1 0.449 +0.039 0.067 +£0.015
BASE E 79,195 - 12.633 £+0.231 14.435 40.245
ABFT z 42,912 ~ 93.8 0.680 +0.078 0.944 +0.091
ABFT+DMRIland é 49,727 ~ 99.7 0.056 +0.021 0.028 +0.015

UPDATED RESULTS: J. Kappes to appear in IJCNN 2025

Three tinyML neural networks :
AWW, VWW, ResNET

ISS-level Fault Injection to obtain
SDC rates (RV32 CPU Model)

Performance Impact

TABLE 1
PERFORMANCE MEASUREMENT OF DIFFERENT FAULT TOLERANCE DFG PASSES AND TINYML BENCHMARKS (BMS).

proposed graph-based fault tolerance® (ours) kernel-implemented (from [14])
Metrics BM? BASE FC overhead +FIC(dw) overhead +DMRland overhead | FC+FIC+ID overhead
Igar [1-109] 1.60 3.37 (+110%) - 342 (+114%) (+135%)
ROM [kB] % 302 584 (+93%) - 600 (+99%) N/A
RAM [kB] 3.30 943 (+185%) - 9.56 (+189%) (+2.694%)
Ipar [1-109] = 240 24.0 (+0%) 26 (+8.3%) 30.7 (+28%) (+45%)
ROM [kB] = 60.1 62.6 (+4.2%) 79.2 (+32%) 101 (+68%) N/A
RAM [kB] < 45.7 45.7 (+0%) 65.74 (+449) 66.12 (+45%) (+3.533%)
Igar [1-109] E 80.8 899 (+0.11%) 92.7 (+3.2%) 08.3 (+9.5%) (+17.07%)
ROM [kB] z 116 118 (+1.7%) 137 (+18%) 156 (+34%) N/A
RAM [kB] & 68.7 68.7 (+0%) 105 (+53%) 1890 (+175%) (+4.874%)

% ABFT methods FC and FIC(dw), and DMRIland method are added on-top from each other from left to right.
b FC-AutoEncoder on ToyADMOS dataset for Anomaly Detection (AD), DS-CNN on Speech Commands dataset for Audio Wakeup Word (AWW),
and ResNET on CIFAR10 dataset for Image Classification (ResNET). All BMs from MLPerf™Tiny [28].

Exploration of Fault Tolerance for Al Workloads
e —
NN Training
Task Redundant Execution Core A1 F-
Planning (DMR/TMR) Core A2 -i ‘
'time

Deployment Algorithm-based Fault Tolerance (ABFT) C O) 0025%-0.045% EDC rate

ML Compiler SW-implemented HW Fault Tolerance (SIHFT) 10-30 % Overhead
error
Lock-step, dual-lock-step -
Rad-hard
HW Archi

ECC, Parity Core

Do we want to protect ML workloads?

m Base accuracy a,
m Accuracy with Soft Errors: a* ~=a —a, , =a— (EDCrate * SoftErrors / Inference)

m Accuracy drop can be minimal (Pl TIMES THUMB estimation):

“10 Gbits of SRAM and an SER of 600 FITs per megabit can experience an error every
170 hours™

10 inferences / sec, 10% EDCrate: soft error / (170h * 360sec/h * 10 inferences/sec)

Aipss = 10% * 1/612 000 = 1,63e-5% (1 in 6 mio inference runs)

Using the 10-30% making the model bigger might give you more accuracy than you loose by EDC

But: No detection (monitoring of SDC rates)

*https://pld.ttu.ee/|AF0030/454636.pdf

Thanks

m Contributors
m Marc Greim
m Uzair Sharif
= Rafael Stahl
m Philipp van Kempen
m Karsten Emrich
m Conrad Foik
m Johannes Geier
m Leonidas Kontopoulos
m Jefferson Parker Jones
m Johannes Kappes

7

))]
VL
,"“/// 1L,

R PFLEGESRWEIT
GEWERDSTLEISSES OER
FRANZ

HOCHSCHULE

S} |

e
"h.! I =8
AT

	Folie 1: Low Overhead SW-based HW Fault Tolerance for tinyML and Security Applications
	Folie 2: Computing Trends: Advanced Driving Functions
	Folie 3
	Folie 4: Soft Errors got new Attention in Recent Years
	Folie 5: Functional Safety Aspects for AI
	Folie 6: Exploration of Fault Tolerance for AI Workloads
	Folie 7
	Folie 8: 2. Related Work
	Folie 9: Fault Effect Equivalence Check (FEEC)
	Folie 10: FEEC: Differential Checks
	Folie 11: Checkpoint Differentials
	Folie 12: 6. Experimental Setup
	Folie 13: 7. Results - Performance
	Folie 14
	Folie 15: Software Implemented HW Fault Tolerance
	Folie 16: SIHFT Methods: Runtime Signature Moitoring
	Folie 17: SIHFT Methods: Instruction Duplication
	Folie 18: REPAIR
	Folie 19: REPAIR vs. SIHFT Evaluation using MiBench
	Folie 20: REPAIR vs. SIHFT Evaluation using MiBench
	Folie 21: CompaSEC
	Folie 22: COMPASEC Results
	Folie 23
	Folie 24: Algorithm-based Error Detection (ABFT)
	Folie 25: tinyML Flow with ABFT (Kernel-level)
	Folie 26: Exploration of Selective Hardening for AI Workloads
	Folie 27: tinyML Flow with ABFT (Graph Level)
	Folie 28: Graph-level Transformation for Conv2D
	Folie 29: Fault Injection Campaign
	Folie 30: Performance Impact
	Folie 31: Exploration of Fault Tolerance for AI Workloads
	Folie 32: Do we want to protect ML workloads?
	Folie 33: Thanks
	Folie 34: Thank you for your attention.

