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Computing Trends: Advanced Driving Functions

Hardware view:
➢ Migration from Distributed, Domain to Zone. 

➢ Few very powerful compute platforms.

➢ Embedded HPC

Software View

➢ Rising number of SW functions on same platform

➢ Rising number of AI-based workloads.

Safety-critical real-time system

➢ Real-time constraints / deadlines.

➢ Functional safe and secure.
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https://www.benzinsider.com/2015/01/car-future-smartphone-wheels/

CNNs, Transformers, 

SSM (MAMBA)
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Computing Trend
tinyML

• Gesture Recognition

Gesture Recognition 

with Radar Sensor

Running NN inference on low-power micro-controllers / IoT Devices

• Audio: Keyword Spotting (KWS) / Audio Wakeup

• Vision: Video Wakeup (Face Detection)

• Radar: Gesture Recognition

• Accelerometer: Activity Detection

https://www.informationweek.com/data-management/the-future-of-ai-is-tiny/

https://www.abiresearch.com/press/tinyml-device-shipments-grow-25-billion-2030-15-million-2020/

Platform: Infineon XMC1302 MCU 
32 MHz Micro-controller CPU
32 kB Flash, 16 kB RAM

tinyML App

https://philab.esa.int/world-breakthrough-in-onboard-ai-model-training-

presented-by-%CF%86-lab-at-igarss/



Soft Errors got new Attention in Recent Years
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https://www.nytimes.com/2022/02/07/technology/computer-chips-errors.html

➢ Two studies by META and Google:

• Dixit et al. “Silent Data Corruptions  at Scale.”, ArXiv abs/2102.11245 (2021)

• Hochschild et. al. „Cores that don‘t count“, HotOS ’21, https://sigops.org/s/conferences/hotos/2021/papers/hotos21-

s01-hochschild.pdf

➢ Higher-than-expected SDC rates observed in datacenter CPUs  (test escapes, T>0 defects)

➢ Possible upcoming challenge as Embedded AI chips move into advanced technology nodes for driving 

autonomous functions

https://www.nytimes.com/2022/02/07/technology/computer-chips-errors.html
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf


Functional Safety Aspects for AI

■ ISO/PAS 21448 

• Safety of the Intended Functionality (SOTIF) -
Situational awareness: Outlier objects, 
undiscovered scenes,…

➢ Algorithmic Safety Techniques: 
Plausibility, Fallback, etc.

■ ISO 26262

• Systematic faults during development („bugs“)

➢ Safety Design Flow, Verification

• Safety in the presence of random HW faults

➢ Fault Tolerance (ASIL level A-D) 
Error detection, handling, recovery, correction

Bit Flip at 

Circuit Level

Radiation-

induced 

Soft Errors

Corruption of 

computation

for(i=0;i<n;i++){

sum+=c[i]*b[i];

}

WriteREG(sum,Addr);

‘0’ → ‘1’

sum=64 → sum=65600

If undetected:

Silent data corruption (SDC)
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Defect-based 

Soft Errors



Exploration of Fault Tolerance for AI Workloads
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➢ Differential FEEC : Speed up Fault Injection at RTL

➢ SIHFT: REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for 
Safety and Security Apps

➢ ABFT: Fault Tolerance for tinyML Apps at  Kernel Level and Graph 
Level 
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Works



• (Dynamic) Cooldown: Accelerate post-FI​

• Early Exit, e.g., masking checks

• Mixed-level cool-down [11,19]​ 

(switch-up abstraction)​

• Requires switching simulation

2. Related Work
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Target: Run FI as fast as possible to cover 

many error scenarios:

Accelerating Fault Injection 

Simulations

ISS

2x

?x

simulation time

RTL Cooldown

Checkpoint

Fault Inject
• Warm-up: Accelerate pre-FI​

• Checkpoint Restore Boot (CRB) [17,18,19]​

• High level warm-up (switch-down) [11,19]
masked

simulation time

Boot RTL Cooldown

Fault Inject



Idea:

“If the states of two experiments are equal, 

their outcome will be, too”

⚫ Similar to Fault Pruning: 

→ Omit experiments with known outcome

→ Without prior analysis (use database)

⚫ Simulation State of experiment a  at time 

⚫ Outcome of experiment   

⚫ FEEC: 

Challenges:

Storage/Trace:

⚫ Simulation states (traces)

⚫ Many experiments

Equivalence Checks:

⚫ Costly (bit-wise comparison)

Solution: Hash States for FEEC

⚫ Reduces Storage to 64-bit per 

experiment state

⚫ Hash not reversible (state info is lost) 

𝐻 µ𝑡
𝑎 = 𝐻 µ𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

µ𝑡
𝑎 = µ𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

µ𝑡
𝑎

𝑎 𝑡

𝑎𝑜𝑎
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Fault Effect Equivalence Check (FEEC)



FEEC: Differential Checks
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Idea:

“If the states of two experiments are equal, so are 

their deviations to another common experiment 

– at the same point in time”

⚫ Similar to Masking Checks: 

➔ Compute Diff vs. Reference

➔ If Diff is 0 fault masked

⚫ (Differential) FEEC: 

Challenges:

Storage:

⚫ Diffs are quite cheap to store 

(sparse matrix)

⚫ Are reversible with Reference states

Equivalence Checks:

⚫ Costly (bit-wise comparison)

⚫ Many Experiments

Solution: Hash Diff FEEC

⚫ Reduces experiment storage to 64-bit 

⚫ Re-use checkpoints for reference

𝐻 𝑡, 𝛿𝑡
𝑎 = 𝐻 𝑡, 𝛿𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

⇔ µ𝑡
𝑎 = µ𝑡

𝑏 ⇒ 𝑜𝑎 = 𝑜𝑏

𝛿𝑡
𝑎 = 𝛿𝑡

𝑏

⇔ µ𝑡
𝑎 ⊕µ𝑡

𝑅 = µ𝑡
𝑏 ⊕µ𝑡

𝑅

𝛿𝑡
𝑎 = µ𝑡

𝑎 ⊕µ𝑡
𝑅

𝛿𝑡
𝑎 = 0 ⇒ µ𝑡

𝑎 = µ𝑡
𝑅



Checkpoint Differentials
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Leveraging existing Checkpoints:

1) Prepare FI Campaign

⚫ Record Checkpoints

1) Execute FI Campaign

⚫ Use Checkpoints to boot as close as 

possible to FI

⚫ Compute Diffs at next checkpoint

⚫ Perform FEEC with Diff-Hashes

⚫ Store Diffs if no FEEC match

ISS

simulation time

RTL Cooldown

Checkpoint

Fault Inject

masked

Error seen before
at this time of sim. 

Regular checkpoints



6. Experimental Setup
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Evaluating Performance and Accuracy

1) Framework:

⚫ Open-source RTL FI Simulator (Verilator based: vrtlmod)

⚫ Automatically add Differential FI API

⚫ “Black-box” DUT principle

⚫ DUT: CV32E40P RISC-V CPU [28,29]

2) Campaign:

⚫ Single-bit transient FI in CPU micro-architecture



7. Results - Performance
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Tab.: Performance in average experiment simulation time 

in seconds and speed-up factor vs. baseline RTL (×).

Performance: “Accelerated vs. RTL”

1) Checkpoint Restore Boot (CRB):

✓ ~2x → as expected

2) Checkpoint Masking (CMSK):

✓ ~3-4x → Masking Rate ~50% (another 2x)

3) Mixed-level Simulation (MLS):

✓ ~4x → Similar Performance to Masking

4) Checkpoint Diff. FEEC (CDIF+FEEC)

✓ Up to ~25x

✓ Scales with sample size

No accuracy loss, except for MLS due to 

different timing of the ISS



➢ Differential FEEC : Speed up Fault Injection at RTL

➢ REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for Safety 
and Security Apps

➢ ABFT for tinyML: Fault Tolerance for tinyML Apps at  Kernel Level 
and Graph Level 
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Agenda



■ Modify given program by inserting logic for detection / handling runtime errors

■ Attractive for embedded systems:

■ Fault Tolerance on Commercial Off-the-shelf HW

■ Flexibility (Selective hardening)

■ At source-code level or at compiler level

15

Software Implemented HW Fault Tolerance



■ To protect control flow integrity

➢ Enumerate basic blocks with unique signature

➢ Update and check run time signature

SIHFT Methods: Runtime Signature Moitoring

Method Covered Errors

CFCSS [Oh, 2002] Illegal inter block jumps

RASM [Vankeirsbilck, 2017] Illegal inter block jumps; Wrong branch taken
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addi RTS,RTS,2

li CTS,10

bne RTS,CTS,Berror

…

addi RTS,RTS,25 

BEQ X1,X2,B3

addi RTS,RTS,-10

li CTS, 25

bne RTS,CTS,Berror

…

addi RTS,RTS,-20

li CTS, 15

bne RTS,CTS,Berror

…

B1

B2

B3

Intra block CFE: Instr. 1 -> Instr. N in B1

Inter block CFE: Instr. 1 in B1 -> Instr. 2 in B3



■ Data-flow Integrity 

■ Duplicate instructions for computational redundancy, Checks placed strategically to ensure 

consistency 

SIHFT Methods: Instruction Duplication
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# BB1:

(i1) ADD r4, r2, r3

(i1
d) ADD r20, r18, r19

(i2) XOR r6, r4, r7

(i2
d) XOR r22, r20, r23

BNE r6, r22, BBerr

BNE r0, r16, BBerr

(i3) BNE r6, r0, BB3

# BB2:

(i4) AND r7, r6, r8

(i4
d) AND r23, r22, r24

(i5) OR   r7, r7, r1

(i5
d) OR   r23, r23, r17

BNE r4, r20, BBerr

BNE r7, r23, BBerr

(i6) SW   0(r4), r7

(i6
d) SW   0(r20), r23

# BB1:

(i1) ADD r4, r2, r3

(i1
d) ADD r20, r18, r19

(i2) XOR r6, r4, r7

(i2
d) XOR r22, r20, r23

(i3) BNE r6, r0, BB3

# BB4:

BNE r22, r16, BBerr

# BB2:

(i4) AND r7, r6, r8

(i4
d) AND r23, r22, r24

(i5) OR   r7, r7, r1

(i5
d) OR   r23, r23, r17

(i6) SW   0(r4), r7

LW   r7, 0(r20)

BNE r7, r23, BBerr

EDDI [Oh2002] SWIFT [Reis2005] NZDC [Didehban2016]

# BB1:

(i1) ADD r4, r2, r3

(i1
d) ADD r20, r18, r19

(i2) XOR r6, r4, r7

(i2
d) XOR r22, r20, r23

BNE r6, r22, BBerr

BNE r0, r16, BBerr

(i3) BNE r6, r0, BB3

# BB2:

(i4) AND r7, r6, r8

(i4
d) AND r23, r22, r24

(i5) OR   r7, r7, r1

(i5
d) OR   r23, r23, r17

BNE r4, r20, BBerr

BNE r7, r23, BBerr

(i6) SW   0(r4), r7
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REPAIR

# BB1:

(i1) ADD r4, r2, r3

(i2) XOR r6, r4, r7

(i1
d) ADD r20, r18, r19

(i2
d) XOR r22, r20, r23

(i3) BNE r6, r0, BB3

# BB4:

BNE r22, r16, BBerr

# BB2:

(i4) AND r7, r6, r8

(i5) OR   r7, r7, r1

(i4
d) AND r23, r22, r24

(i5
d) OR   r23, r23, r17

(i6) SW   0(r4), r7

LW   r7, 0(r20)

BNE r7, r23, BBerr

NZDC (CR: Coarse grained)

# BB1:

(i1) ADD r4, r2, r3

(i2) XOR r6, r4, r7

(i1
d) ADD r31, r18, r19

(i2
d) XOR r30, r31, r23

(i3) BNE r6, r0, BB3

# BB4:

BNE r30, r16, BBerr

# BB2:

(i4) AND r7, r6, r8

(i5) OR   r7, r7, r1

(i4
d) AND r29, r30, r24

(i5
d) OR   r28, r29, r17

(i6) SW   0(r4), r7

LW   r7, 0(r31)

BNE r7, r28, BBerr

REPAIR [Sharif21]

Dynamic register 

pairing between 

primary and shadow 

computation

More illegal jumps will 

be detected by the 

instruction duplication

Runtime monitoring 

can be removed for 

illegal jump detection.

This check will detect illegal 

jumps to green instructions 

due to Imbalance between 

primary and secondary 

computation
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REPAIR vs. SIHFT Evaluation using MiBench

𝑆𝐷𝐶𝑟𝑎𝑡𝑒 =
𝑛𝑜. 𝑜𝑓 𝑆𝐷𝐶𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠
∗ 𝛾

On average, REPAIR performs competitively with state-of-the-art methods

U Sharif, D Mueller-Gritschneder, U Schlichtmann: Repair: Control flow protection based on register pairing updates for sw-implemented

hw fault tolerance, TECS 21
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REPAIR vs. SIHFT Evaluation using MiBench

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

REPAIR shows better overhead performance than NZDC+RASM on all programs



Security: Instruction Skip Fault Model

➢ E.g. caused by flushes of instruction cache (several instructions skipped in program flow)

➢ Observation: Standard SIHFT techniques are not very efficient to detect instruction skips

CompaS(eC) Compiler-assisted Safety (ecurity Countermeasure)

https://github.com/tum-ei-eda/compas-ft-riscv

➢ Re-combination of several (sub)techniques RTM and Instr. duplication: 

“what works best against instruction skip model”

21

CompaSEC

https://github.com/tum-ei-eda/compas-ft-riscv


Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif, and Ulf Schlichtmann. 2023. CompaSeC: A Compiler-Assisted

Security Countermeasure to Address Instruction Skip Fault Attacks on RISC-V. ASP-DAC 23

COMPASEC Results
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Goal: Boot a malicious software 

image bypassing security checks

Tool: ARCHIE [9]: QEMU-based 

fault injection simulation



➢ Differential FEEC : Speed up Fault Injection at RTL

➢ REPAIR, COMPASEC: Compiler-assisted Fault Tolerance for Safety 
and Security Apps

➢ ABFT for tinyML: Fault Tolerance for tinyML Apps at  Kernel Level 
and Graph Level 
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Agenda



Algorithm-based Error Detection (ABFT)
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• ABFT uses checksums to find random errors in linear 
algebra operations (e.g. matrix-matrix-multiply) [1]

• NVIDIA: Filter and input fmap checksum (FIC) [2]
➢ Efficient implementation for convolutions

• Less than 2x runtime / energy overhead

■ [1] Huang et al. “Algorithm-based fault tolerance for matrix operations,” 
IEEE Transactions on Computers, 1984.

■ [2] Hari et al. “Making convolutions resilient via algorithm-based error
detection techniques,”
IEEE Transactions on Dependable and Secure Computing, 2022.



■ Hand-coded ABFT and SIHFT in ML Kernel for dense, conv, depthwise-conv

■ Integrated in TVM (ML Compiler) for tinyML workloads

➢ Full protection

➢ Selective protection based on 

vulnerability analysis

tinyML Flow with ABFT (Kernel-level)
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TARGET
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Floating Point 
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Exploration of Selective Hardening for AI Workloads

• Three tinyML neural networks : 
AWW, VWW, ResNET

• Mixture of instruction duplication and 
NVIDIA FIC (ABFT method)

• ISS-level Fault Injection to obtain 
SDC rates (RV32 CPU Model) 

26
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19%

AVG.

0,086% 0,79%

0%

21%

9,9%

5,5%

0,0023% 0,0025%

2200x Improvement

U Sharif, D Mueller-Gritschneder, R Stahl, U Schlichtmann Efficient software-implemented hw fault tolerance for tinyml inference in

safety-critical applications, DATE23



■ ABFT and DMR as Graph Transformations

■ Integrated in TVM (ML Compiler) for tinyML workloads

tinyML Flow with ABFT (Graph Level)
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Prequantized 
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Graph-level Transformation for 

Conv2D
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Fault Injection Campaign
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UPDATED RESULTS: J. Kappes to appear in IJCNN 2025

• Three tinyML neural networks : 
AWW, VWW, ResNET

• ISS-level Fault Injection to obtain 
SDC rates (RV32 CPU Model) 



Performance Impact
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Exploration of Fault Tolerance for AI Workloads
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Neural

Architecture Search

Bigger

NN
NN NN_bigger

HW Architecture

Lock-step, dual-lock-step

Rad-hard

DMR,TMR

ECC, Parity
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Checker 

Core
dt
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Split Compare

error

Deployment

ML Compiler
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error

Task
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Core A2

time
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NN1v3NN1 v2
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Fault-Tolerant 
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5%-12% EDC rate

0.0025%-0.045% EDC rate
10-30 % Overhead



Do we want to protect ML workloads?

■ Base accuracy a,  

■ Accuracy with Soft Errors: a* ~= a – aloss = a – (EDCrate *  SoftErrors / Inference)

■ Accuracy drop can be minimal (PI TIMES THUMB estimation):  

32

“10 Gbits of SRAM and an SER of 600 FITs per megabit can experience an error every 

170 hours”*

10 inferences / sec, 10% EDCrate: soft error / (170h * 360sec/h * 10 inferences/sec)

aloss = 10% * 1/612 000 = 1,63e-5%  (1 in 6 mio inference runs)

*https://pld.ttu.ee/IAF0030/454636.pdf

Using the 10-30% making the model bigger might give you more accuracy than you loose by EDC

But: No detection (monitoring of SDC rates)
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Thanks



Thank you for your attention.
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