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Tackling Test and Diagnosis 
Challenges Using GPU-Based High-
Throughput Timing Simulation 
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Motivation
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IR-Drop During Scan Test

ML Pushes New Data-Parallel Compute 
Architectures

Many Test/Diagnosis Tasks Require 
Timing Simulations
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Small Delay Defect Diagnosis


Resilience Characterizations

Data-Parallel Architectures For High-Performance Timing Simulation

[ Nvidia ]



Agenda

GPU-Accelerated Timing Simulation


Scan-Test Power Analysis


Small Delay Fault Simulation and Diagnosis


AI Accelerator Resilience Analysis
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GPU Programming Principle
Single Instruction, Multiple Data (SIMD)

• Kernel: Short program that runs on GPU


• Addition on GPU:
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• Thread: Kernel running with unique ID 
Each thread can (should!) access different data


• Vector-Addition:

+
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+

10k+ threads for 
good performance



Kernel: Compute Output Waveform of One Cell

• Waveform: All transitions on a signal within one clock cycle


• Compute complete output waveform from complete input waveforms
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[Holst et al.: "High-Throughput Logic Timing Simulation on GPGPUs" ToDAES Vol. 20, No. 3, Article 37, June 2015]



Threads: Data-Parallel Cell Evaluations

• Same Kernel Code, but Distinct ...


• ... Input Waveforms


• ... Cell Function (LUT)


• ... Pin-to-Pin Delays


• One Kernel Launch for 10000+ 
Independent Cell Evaluations
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[Holst et al.: "High-Throughput Logic Timing Simulation on GPGPUs" ToDAES Vol. 20, No. 3, Article 37, June 2015]



Gate-Level Timing Simulation on GPU

• Toposort the Gate-Level 
Combinational Logic


• One Kernel Launch per Level


• Maximizes Data-Parallelism


• Parallel Evaluation of 
Independent Gates


• Concurrent Sim of Many 
Independent Inputs
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Device Memory (Waveform Storage)
Compute Kernel evaluates one topological level

Structural Parallelism (Independent Gates)
Data Parallelism (Independent Simulations) capture
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[Holst et al.: "High-Throughput Logic Timing Simulation on GPGPUs" ToDAES Vol. 20, No. 3, Article 37, June 2015]
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Scan-Test Power Analysis 

Small Delay Fault Simulation and Diagnosis
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Scan Shift Clock Skew Problem

• Excessive IR-Drop During Shifting 
can Corrupt Test Data


• Dynamic Power Simulation for Every 
Shift Cycle?
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[Holst, Schneider, Kawagoe, Kochte, Miyase, Wunderlich, Kajihara, Wen: 
Analysis and Mitigation of IR-Drop Induced Scan Shift-Errors ITC 2017]



Shift Switching Activity Simulation

• Perfect Data-Parallel Workload


• All Scan-States are Known in 
Advance


• Simulate all PPI Transitions 
Data-Parallel
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[Holst, Schneider, Kawagoe, Kochte, Miyase, Wunderlich, Kajihara, Wen: 
Analysis and Mitigation of IR-Drop Induced Scan Shift-Errors ITC 2017]



Skew Estimates: Zero-Delay vs. Full Timing

• Glitches have large impact in some 
shift cycles


• It takes only one timing violation to 
corrupt the test


• Need to simulate all shifts to find 
risky ones
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[Holst, Schneider, Kawagoe, Kochte, Miyase, Wunderlich, Kajihara, Wen: 
Analysis and Mitigation of IR-Drop Induced Scan Shift-Errors ITC 2017]



Partial Shifting for IR-Drop Mitigation

• Estimate IR-Drop Map for Every Shift 
Cycle


• Identify Risky Cycles with IR-Drop 
Hotspots


• Assign Chains into Shift-Groups to 
Balance Out Power Demand


• Additional Simulations to Find the 
Sweet-Spot
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Excessive peak
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Contribution 2: Targeted Scan Shift Schedule
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Excessive peak
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c-1A c+1A
cA

c-1B c+1B
cB

scan chain groups:
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[S. Holst, S. Shi, and X. Wen, “Targeted Partial-Shift for Mitigating Shift 
Switching Activity Hot-Spots During Scan Test,” PRDC 2019]
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Small-Delay Fault Simulation

• Fin-FET: More Small-Delay Faults


• Complex Timing Behavior 


• 4 Dimensions of Parallelism:
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[Schneider, Holst, Kochte, Wen, Wunderlich: GPU-Accelerated Small Delay Fault Simulation DATE 2015] 

[Schneider, Kochte, Holst, Wen, Wunderlich: GPU-Accelerated Simulation of Small Delay Faults TCAD 2017]

Structural Parallelism Stimuli Parallelism Fault Parallelism
Variation Instance 

Parallelism



Small-Delay Fault Diagnosis for Yield Learning

• Challenges: 

• Complex Behaviour of SDFs


• Test Response Compression


• Process Variation

16

Small Delay Fault Diagnosis with Compacted Responses

Anonymous Author(s)

ABSTRACT
With today’s tight timing margins, increasing manufacturing varia-
tions, and new defect behaviors in FinFETs, e�ective yield learning
requires detailed information on the population of small delay
defects in fabricated chips. However, production test responses
are usually highly compacted, making it very hard for logic diag-
nosis algorithms to accurately identify small delay defects. This
work presents the very �rst diagnosis algorithm speci�cally de-
signed to diagnose timing issues on compacted test responses. An
innovative combination of structural analysis, waveform-accurate
time-simulation, and syndrome matching for compacted test re-
sponses allows the proposed algorithm to cope with timing varia-
tions without compromising diagnostic resolution. Experiments on
large benchmark circuits clearly demonstrate the scalability and
accuracy of the new diagnosis approach.

1 INTRODUCTION
In modern nanometer technologies, timing-related faults have be-
come a major concern in any high-performance or low-power de-
vice and their diagnosis is crucial for e�ective yield learning during
production [28]. Modern multi-gate devices, such as FinFETs, are
especially prone to timing-related faults as production defects that
a�ect only some of their gates can reduce their driving strength
[13]. Small delay faults (SDFs) [17] are a popular model to describe
such additional delays and considerable amount of research has
been conducted on simulation [6, 20, 21], test generation [18], and
diagnosis [2, 4, 14, 24] of SDFs. The additional delay introduced by
an SDF is called its size. In contrast to transition or gross delay faults
[3, 11], this additional delay is usually smaller than the cycle time
of their clock domain. SDFs at the same location but with di�erent
sizes may lead to di�erent test responses as the fault e�ects are only
observable over su�ciently long paths [16, 22]. This dramatically
increases the number of possible faults in the search space for a
corresponding logic diagnosis algorithm. Further complications
arise when the same SDF of the same size lead to di�erent results in
di�erent chips due to manufacturing variations [19, 23]. All of the
aforementioned aspects combined render logic diagnosis of SDFs
an extremely challenging task.

The fault syndromes obtained through production test are usu-
ally highly compacted so as to reduce tester memory demands and
test time [28]. For e�cient yield learning, a diagnosis algorithm has
to operate on compacted signatures only. The trade-o� between
compaction ratios and diagnostic resolutions have been investi-
gated previously [5] and some diagnosis approaches can cope with
very high compaction ratios [9]. Compacting syndromes from SDFs
leads to several complications for logic diagnosis. Fig. 1 illustrates
these challenges on a simple design with two scan chains of length
three. The e�ects of the SDF is only observable at pseudo-primary
outputs (PPOs) of su�ciently long paths. Even when the propaga-
tion path is long enough, the fault e�ect may still be masked due to
reconvergency-induced hazards. The six PPOs are compacted down

to three signature bits, one for each scan slice. This compaction
can lead to additional masking as shown in the �rst signature bit.
A diagnosis algorithm has to model the activation and propaga-
tion of SDFs accurately enough in order to predict compacted fault
signatures from fault candidates under the impact of hazards and
process variations [20].
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Figure 1: Space-compacted test response of a SDF syndrome.

Approaches to diagnosing SDFs are mainly based on two dis-
tinct principles: inject-and-validate and backtracing [24]. Inject-and-
validate based methods inject candidate faults and use multi-valued
logic simulation [2, 27], timing-analysis combined with transition-
fault simulation [4] or statistical reasoning [12] to estimate their
signatures, which are then compared with the observed responses.
Diagnosis approaches that work well with response compaction
usually focus on faults that do not require exact timing models such
as the stuck-at and transition faults [9]. These approaches usually
do not model the precise timing of a circuit due to its computa-
tional complexity. Simpler timing models, however, easily lead to a
large percentage of mismatching signature bits as shown in Fig. 2a).
While only one out of six PPOs di�er between the shown transition
fault candidate and the SDF in Fig. 1, 33% of signature bits show
a mismatch. The reason is that compactors are designed for high
observability and each change in a response bit is re�ected in at
least one bit of the compacted signature.
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Figure 2: Common SDF diagnosis techniques are ine�ective
on compacted syndromes.

[Holst, Schneider, Kochte, Wen, Wunderlich: Variation-Aware Small Delay 
Fault Diagnosis on Compressed Test Responses ITC 2019]



Small-Delay Fault Diagnosis Flow

• Scoring SDF Candidates for all Patterns: 
 
Many Data-Parallel Timing Simulations
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Variation-Invariant Backtracing
Using 6-Valued Logic Simulation

Spatial Pruning

Delay
Test Set

Fault 
Signatures

Initial SDF 
Candidates

Temporal Pruning

SDF Candidate Timing Simulation
Using GPU-Accelerated Waveform-
Accurate Delay Fault Simulation

Tester-Fail Scoring

Final SDF Scoring

Ranked 
Candidates

After this propagation, LST(t ,o) gives for a test t and a PPO o

the point in time after which the signal is guaranteed to remain
static in the fault-free circuit. The slack at the PPO o for the test
t is the di�erence between its LST(t ,o) and the capture time C:
slack(t ,o) = C � LST(t ,o). The slack of a signature bit s 2 S equals
the minimum slack of its PPOs: slack(t , s ) = min{slack(t ,o) |o 2
O[s]}. For a signature bit s 2 Sf (t ) to be erroneous, there must
be a SDF f in the circuit with a size larger than the slack at s
(size( f ) � slack(t , s )).

The lower bound sizemin is the maximum slack at a failing sig-
nature bit of the whole test:

sizemin = max{slack(s, t ) |t 2 T , s 2 Sf (t )}.
This lower bound does not depend on fault location and is therefore
the same for all spatial candidates.

The upper bound sizemax is based on the earliest arrival times
(EATs) at all of its reachable PPOs. The earliest arrival time EAT(t ,o)
at a PPO o for a test t is an estimated point in time before which
the signal at o is guaranteed to be stable. These EATs are calculated
in the same way as the LSTs. The only di�erence is that at each
cell the smallest EAT candidate is propagated to the cell’s output
signal. If a SDF is large enough to push the EAT of a PPO beyond
the capture timeC , it leads to the same captured value as any larger
fault at the same location. Therefore, the upper bound sizemax ( f )
of a fault candidate f is the minimum delay required to push the
EATs of all potentially observing PPOs beyondC . LetO (t , f ) be the
set of PPOs with a possibly-sensitized path originating at f under
test t . The upper bound for the candidate f is:

sizemax ( f ) = C �min{EAT(t ,o) |t 2 T ,o 2 O (t , f )}
The upper bound is unique to each spatial candidate because each
of them can propagate to di�erent PPOs.

A few timing-aware diagnosis techniques also use passing re-
sponses of a CUD to estimate sizemax ( f ) [2, 4, 14, 29]. This is not
applicable here, because a passing signature bit s does not imply
that all PPOs in O[s] are correct.

The size of each spatial candidate SDF f must fall within the
calculated bounds: sizemin < size( f )  sizemax ( f ). If size( f ) is
smaller than sizemin, it cannot reach all failed signature bits. Any
fault with size( f ) larger than sizemax ( f ) leads to the same test
response as the fault with size( f ) = sizemax ( f ). This spatially and
temporally constrained set of SDF candidates are called the initial
candidates.

4 SDF CANDIDATE TIMING SIMULATION
The initial SDF candidates are now explicitly simulated using the
GPU-accelerated waveform-accurate small delay fault simulation
engine in [21]. To correctly simulate all hazards and race condi-
tions that might be caused by the SDF, each candidate is simulated
with a concrete size and polarity. The fault sizes at each candi-
date fault location are chosen based on the bounds determined in
temporal pruning. Given a spatial candidate f and its size interval
[sizemin, sizemax ( f )], n sizes are chosen that are equally distributed
across this interval. Since pruning cannot determine the polarity of
the candidates, both slow-to-rise and slow-to-fall SDFs are explicitly
simulated, leading to 2n candidates at each location.

Each candidate is injected into the nominal-time simulation
model and then all relevant tests are simulated in a data-parallel
fashion as shown in Fig. 4. For each test and PPO, the simulation
delivers the full switching history over time including all glitches.
This information is used in twomanners. First, a predicted signature
is calculated by directly computing the parity bits corresponding
to the used on-chip compactor. Second, the con�dence in each
PPO value is determined by analyzing the signal transition times
surrounding the nominal capture time. If a PPO switches close to
the capture time during nominal-time simulation, chances are high
that a di�erent value has been captured in the CUD due to process
variations. Therefore, the con�dence in this simulated value is lower.
Finally, a ranked list of SDF candidates is produced by matching
simulated and observed signatures as to be detailed below.
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Figure 4: Two-dimensional waveform processing.

4.1 SDF Simulation Con�dence Estimation
After the timing simulation of a SDF candidate f with a test t , the
full waveform with all the signal changes are analyzed for each
PPO. The waveform at a PPO o is a step-function that alternates
between 1 and 0 according to the logic values of the signal over time.
This step-function is multiplied with a Gaussian probability density
function with its mean at capture time C and a chosen variance
�
2. The area A of the resulting product gives the probability that

the PPO o in the CUD captured a logic 1. The predicted logic value
at the PPO o is of (t ) = 1 if A > 0.5 and of (t ) = 0 otherwise. The
con�dence in the predicted logic value is given by:

c (of (t )) = |2 · (A � 0.5) |.
The con�dence is c = 0.0 if A = 0.5 and c = 1.0 if A = 0.0 or 1.0.

From the predicted logic values and con�dences at each PPO, it
is easy to calculate the values and con�dences for each signature
bit:

s
f (t ) =

M

o2O[s]
o
f (t ) and c (sf (t )) =

Y

o2O[s]
c (of (t ))

4.2 SDF Candidate Scoring
Each SDF candidate is assigned a score to re�ect how well its simu-
lated signatures predict the observed ones from the CUD. For a SDF
candidate f and a test t , the score contribution of a single signature
bit s is calculated as:

score(sf (t )) :=
8><>:
c (sf (t )) if sf (t ) = sCUD (t ),
�c (sf (t )) otherwise.
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[Holst, Schneider, Kochte, Wen, Wunderlich: Variation-Aware Small Delay 
Fault Diagnosis on Compressed Test Responses ITC 2019]



Impact of Compaction on Diagnosis

• Response Compaction has Huge 
Impact on Traditional Diagnosis


• GPU Provides the Necessary 
Simulation Performance to Restore 
Diagnostic Resolution

18
TF Diagnosis: [Holst, Wunderlich: A Diagnosis Algorithm for 

Extreme Space Compaction, DATE 2009]
[Holst, Schneider, Kochte, Wen, Wunderlich: Variation-Aware Small Delay 

Fault Diagnosis on Compressed Test Responses ITC 2019]



Diagnosis For Reliability Improvement
Diagnose Faster-Than-At-Speed Test Signatures

19

In-Field

a) Conv. Test and Diagnosis Flow

Diagnosis

Late
Reliability

Improvement

Production
HDD

b) FAST Test and Diagnosis Flow

Avoid Early-Life Failure
Avoid Field-Return

Lower DPPM

months or years

No HDD
Callouts 

Quick

In-Field

pass

fail

Shipment

At-Speed
Delay Test

Field-Return

Early Life
Failure

Reliability
Improvement

Production
HDD

pass

Shipment

At-Speed
and FAST

Slow Binning

HDD
Identified 

FAST 
Diagnosis

In-Field

a) Conv. Test and Diagnosis Flow

Diagnosis

Late
Reliability

Improvement

Production
HDD

b) FAST Test and Diagnosis Flow

Avoid Early-Life Failure
Avoid Field-Return

Lower DPPM

months or years

No HDD
Callouts 

Quick

In-Field

pass

fail

Shipment

At-Speed
Delay Test

Field-Return

Early Life
Failure

Reliability
Improvement

Production
HDD

pass

Shipment

At-Speed
and FAST

Slow Binning

HDD
Identified 

FAST 
Diagnosis

At-Speed Test and 
Conventional Diagnosis:

94%

6% In 89-98% of all cases 
the real Hidden Delay 

Defect is included in the 
final ranking 

Diagnose Hidden Delay Defects (HDDs)

[S. Holst, M. Kampmann, A. Sprenger, J. D. Reimer, S. Hellebrand, H.-J. Wunderlich, and X. Wen, 
“Logic Fault Diagnosis of Hidden Delay Defects,”  ITC 2020]
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Cutting-Edge VLSI Meets Safety-Critical Systems

• Need to Understand Impact of Hardware-Related Errors

Compute 
Performance 
Needs

Cutting-Edge 
Process: 
Reliability ?

Functional 
Safety 
Requirements

[ EE Times ] [ Accolade Technology ]
Time
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Latent 
Defects

Soft Errors

Aging

AI Inference
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Typical Neural Processing Units

• NN Inference = Many Dot-Products


• Large 2D-Grid of Multiply-Accumulate 
(MAC) Units


• 96 x 96 for a Tesla NPU


• 256 x 256 for Google TPUv1 
(Systolic Array)


• Hardware errors can lead to 
Silent Data Corruption.
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Simulating Systolic Arrays

• Paths of interest are within the MAC units


• Load MAC Gate-Level Netlist on GPU


• Parallelism of the SA directly translates to data 
parallelism on GPU


• Can simulate all 256 x 256 MAC units in parallel


• Each MAC can have distinct simulation 
parameters: timing variation, fault conditions, ...
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Complete Timing Simulation of NN Inferences
INT8 MAC Unit

• GPU: Nvidia RTX 3090 with 24 GB Memory


• LeNet-5: 417k MAC operations per inference


• 128 images = 53M MAC operations = 8 min sim time
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Errors and Accuracy Impact of Overclocking Better Results Than Bit-Error Injection

[Holst et al.: "The Impact of Timing Errors in 

Systolic-Array-Based AI Accelerators" AI-TREATS 2023]



Summary

• GPU-based High-Throughput Timing Simulation 
→ Performance by Data-Parallelism


• 10000+ Independent Simulations 
"Feeding the Monster"


• Scan-Test Power Analysis


• Small Delay Fault Simulation and Diagnosis


• AI Accelerator Resilience Analysis


• Code: https://github.com/s-holst/kyupy
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Small Delay Fault Diagnosis with Compacted Responses

Anonymous Author(s)

ABSTRACT
With today’s tight timing margins, increasing manufacturing varia-
tions, and new defect behaviors in FinFETs, e�ective yield learning
requires detailed information on the population of small delay
defects in fabricated chips. However, production test responses
are usually highly compacted, making it very hard for logic diag-
nosis algorithms to accurately identify small delay defects. This
work presents the very �rst diagnosis algorithm speci�cally de-
signed to diagnose timing issues on compacted test responses. An
innovative combination of structural analysis, waveform-accurate
time-simulation, and syndrome matching for compacted test re-
sponses allows the proposed algorithm to cope with timing varia-
tions without compromising diagnostic resolution. Experiments on
large benchmark circuits clearly demonstrate the scalability and
accuracy of the new diagnosis approach.

1 INTRODUCTION
In modern nanometer technologies, timing-related faults have be-
come a major concern in any high-performance or low-power de-
vice and their diagnosis is crucial for e�ective yield learning during
production [28]. Modern multi-gate devices, such as FinFETs, are
especially prone to timing-related faults as production defects that
a�ect only some of their gates can reduce their driving strength
[13]. Small delay faults (SDFs) [17] are a popular model to describe
such additional delays and considerable amount of research has
been conducted on simulation [6, 20, 21], test generation [18], and
diagnosis [2, 4, 14, 24] of SDFs. The additional delay introduced by
an SDF is called its size. In contrast to transition or gross delay faults
[3, 11], this additional delay is usually smaller than the cycle time
of their clock domain. SDFs at the same location but with di�erent
sizes may lead to di�erent test responses as the fault e�ects are only
observable over su�ciently long paths [16, 22]. This dramatically
increases the number of possible faults in the search space for a
corresponding logic diagnosis algorithm. Further complications
arise when the same SDF of the same size lead to di�erent results in
di�erent chips due to manufacturing variations [19, 23]. All of the
aforementioned aspects combined render logic diagnosis of SDFs
an extremely challenging task.

The fault syndromes obtained through production test are usu-
ally highly compacted so as to reduce tester memory demands and
test time [28]. For e�cient yield learning, a diagnosis algorithm has
to operate on compacted signatures only. The trade-o� between
compaction ratios and diagnostic resolutions have been investi-
gated previously [5] and some diagnosis approaches can cope with
very high compaction ratios [9]. Compacting syndromes from SDFs
leads to several complications for logic diagnosis. Fig. 1 illustrates
these challenges on a simple design with two scan chains of length
three. The e�ects of the SDF is only observable at pseudo-primary
outputs (PPOs) of su�ciently long paths. Even when the propaga-
tion path is long enough, the fault e�ect may still be masked due to
reconvergency-induced hazards. The six PPOs are compacted down

to three signature bits, one for each scan slice. This compaction
can lead to additional masking as shown in the �rst signature bit.
A diagnosis algorithm has to model the activation and propaga-
tion of SDFs accurately enough in order to predict compacted fault
signatures from fault candidates under the impact of hazards and
process variations [20].
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Figure 1: Space-compacted test response of a SDF syndrome.

Approaches to diagnosing SDFs are mainly based on two dis-
tinct principles: inject-and-validate and backtracing [24]. Inject-and-
validate based methods inject candidate faults and use multi-valued
logic simulation [2, 27], timing-analysis combined with transition-
fault simulation [4] or statistical reasoning [12] to estimate their
signatures, which are then compared with the observed responses.
Diagnosis approaches that work well with response compaction
usually focus on faults that do not require exact timing models such
as the stuck-at and transition faults [9]. These approaches usually
do not model the precise timing of a circuit due to its computa-
tional complexity. Simpler timing models, however, easily lead to a
large percentage of mismatching signature bits as shown in Fig. 2a).
While only one out of six PPOs di�er between the shown transition
fault candidate and the SDF in Fig. 1, 33% of signature bits show
a mismatch. The reason is that compactors are designed for high
observability and each change in a response bit is re�ected in at
least one bit of the compacted signature.
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Figure 2: Common SDF diagnosis techniques are ine�ective
on compacted syndromes.
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