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1 Introduction

With the increasing need for complex systems and the increasing reliance on electronic devices in critical
applications e.g aviation, medical devices etc., the demand for quality of the systems is as high as ever.
And since testing is the only way to achieve such high quality. the testing flow is being continuously
adapted and refined. As indicated in Figure 1, there are a number of tests performed to ensure the quality
of the manufactured devices. System-Level Test (SLT) is the outgoing quality measure performed before
a device is deployed in its operation environment as described in [1]. Therefore, the system is tested as
one entity, where the software is running on the hardware to mimic its normal operation mode.

Figure 1: Standard test flow

SLT has been added as a last test insertion within the standard step when required test coverage was not
reached with the structural and functional tests [2]. In Figure 2, the venn diagram shows that maximum
test coverage can only be reached when structural, functional and SLT are performed.

Figure 2: Venn diagram for maximizing test coverage

As mentioned before, SLT mimics a system in its normal operation mode and views it as one entity, as
opposed to the previous testing steps, where each building block of a system has been tested on its own.
We aim to close this gap between the different building blocks. By appling and refining the methods of
SLT, we want to demystify the mysteries associated with SLT. Some ideas as to why marginal defects
manifest and can only be caught with the help of SLT have been developed but still not concluded. Our
target is to explore the reasons and find possible solutions with the help of SLT to catch and mitigate
marginal defects.
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Figure 3: This project

2 Implementation

The purpose of this framework is to have a testing platform in order to investigate causes of marginal
defects. Moreover, the framework is implemented using commercial tools to make it easy to adopt into a
running system. It also has two modes of operation: the Automatic Test Pattern Generator/Generation
(ATPG) mode and the SLT mode. Figure 4 shows the complete framework. A list of the utilized tools
is found under Subsection 2.3

Figure 4: The current framework.
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Figure 5: The ATPG framework.

2.1 The ATPG framework

As mentioned already, the framework has two modes: the ATPG mode shown in Figure 5. The first step
is to synthesize the design to a gate-level netlist with the help of a technology library. Then the ATPG
can take in the gate-level netlist and the technology library in order to perform the structural test and
outputs the results. The results can be the fault coverage, the test coverage, the fault list as well as the
patterns that have been applied.

2.2 The SLT framework

The SLT mode of the framework extends the ATPG mode to give the complete framework as shown in
Figure 4. It is extended to include a logic Simulator that simulates the SLT program and outputs the SLT
patterns. The ATPG accepts the SLT patterns together with the gate-level netlist and the technology
library to perform a fault simulation. The results are also the same as in the ATPG mode.

2.3 Tools

The idea of having this framework is to have a testing platform for different designs and different fault
models. Therefore, we are using commercial tools to build the SLT framework.

� Design: The CVA6 Core [3] based on the RISC-V Instruction Set Architecture (ISA)

� Synthesis Tool: Design Compiler by Synopsys

� Technology library: Cadence General Process Design Kit (GPDK)45 nm

� Logic Simulator: QuestaSim by Siemenes Mentor Graphics

� ATPG/ Fault Simulator: TestMax by Synopsys

2.4 Challenges & Solutions

While implementing the framework, a lot of challenges have been encountered. In this section, some of
these challenges are listed with some of the applied solutions to circumvent these obstacles.

1. Find a RISC-V core that meets the requirements of being able to boot an operating system, easily
extended to multi-core and runs in our simulation

� Multiple candidates UC Berkley’s Rocket, SiFive’s U54, SiFive’s E31 and the ETH Zurich’s
CVA6. The CVA6 simulation ran with little effort.

2. Genus Synthesis Tool optimized the core by removing pipeline stages

� To solve this problem we simply switched to another Synthesis Tool, Design Compiler, that
gave a better suited performance to our needs.

3. Logic simulation time
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� Use memory pre-loading instead of the debugging module

4. Fault simulation time & low fault coverage

� Use memory template for modelling the memory in ATPG

� Scan-chain insertion

5. Extended Value Change Dump (eVCD) file dumped by QuestaSim gives wrong values

� Extract the values as List file

6. eVCD file does not include complete scan pattern information

� Translate to Standard Tester Interface Language (STIL) format to match a scan pattern as
indicated in Figure 6

Figure 6: Example of a scan pattern
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3 Results

3.1 ATPG Results

Without scan-chains With scan-chains
Module Test cov.[%] Fault cov.[%] # Faults Test cov.[%] Fault cov.[%] # Faults

ariane

commit stage

controller

csr regfile

ex stage

frontend

id stage

issue stage

perf counters

wt cache subsystem

0.17

100

100

96.75

64.74

84.71

99.95

95.61

100

12.02

0.17

87.51

28.12

94.06

63.63

84.20

97.47

95.46

95.32

11.91

1,409,028

6,792

384

71,490

637,926

119,258

15,230

405,776

41,262

168,402

98.75

100

100

100

99.90

100

99.97

100

100

>90

97.99

87.43

28.06

95.59

98.22

99.40

97.59

99.92

91.59

crashed

1,465,876

6,792

392

81,292

649,386

135,882

16,058

427,906

54,546

173,720

Table 1: ATPG resutls: with and without scan-chains

The results of the ATPG Simulation are shown in Table 1. Here the fault and test coverages are listed
for the design first without scan-chains [4] and with scan-chains. The results for the design including
scan-chains show an increase in fault and test coverage for all sub-modules of the processor as well as
a slight increase in the number of faults which are introduced because of the extra hardware for the
scan-chains. For the processor without scan-chains the ATPG Simulation time exceeded 2 weeks without
much progress. As for the cache subsystem with scan-chains the simulation failed to terminate correctly
but the progress showed a higher than 90 % test coverage for that module.

3.2 SLT Results

Module Test cov.[%] Fault cov.[%]

ariane

commit stage

controller

csr regfile

ex stage

frontend

id stage

issue stage

perf counters

wt cache subsystem

?

7.33

93.52

36.88

?

20.83

70.42

58.24

11.93

?

?

6.41

26.30

35.85

?

20.71

68.68

58.21

11.37

?

Table 2: SLT Results for the CVA6 without scan-chains

Table 2 shows the results for the SLT patterns when applied to the CVA6 Core without inserting scan-
chains. As indicated, the results show low coverages for test and fault coverages in comparison to the
ATPG results. For some module simulation did not terminate for over a week without much progress.
These modules are listed in rows 1,5 and 10.
The SLT results for the design with scan-chain should be ready as soon as Challenge # 6 is resolved. We
expect a much better performance with scan-chains as was the case with the ATPG results.
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4 Application

One application that has been developed with this framework is a solution for the ”Long-Tail Test
Patterns ”. A tester’s memory is usually limited in size and the Final Test Insertion patterns are often
more than what a tester can store in a single insertion. Therefore, two solutions are applied to overcome
this problem. Either the tester is run multiple times, each time inserting the next set of patterns. This
causes an increase in test time based on the number of insertions required to apply all the test patterns
as well as an increase in test cost. Or the test patterns are ordered in descending order according to their
number of fault detection and the test patterns with the least number of fault detection are chopped off,
resulting in loss of fault coverage. These patterns are called the ”Long-Tail Test Patterns” according to
how they look as shown in Figure 8.
With the help of this framework we have been able to find a solution that maintains the fault coverage,
reduced the test time and is optimized for cost. This is achieved by merging the two modes of the
framework to reduce the number of ATPG patterns needed to reach the desired fault coverage. First,
the SLT patterns are applied to extract the fault list covered by the SLT program. These faults are then
excluded from the fault list when running the ATPG mode. Figure 7 summarizes these steps.

Figure 7: Multi-Layer Flow

Figure 8 illustrates the results of the multi-layer simulation for the controller sub-module. On the x-axis
the ATPG patterns as originally numbered are shown. On the y-axis the number of faults are displayed.
The red vertical line is a hypothetical limit of a tester’s memory set at 75% of the number of patterns.
The blue bars represent the ATPG patterns that uniquely detect faults not detected by the SLT patterns.
While the pink bars represent the patterns which overlap in fault detection with the SLT patterns. This
serves as a proof of concept with a very basic SLT program such as ”Hello,World!”. According to this
example, after the multi-layer simulation only one Final Test (FT) insertion is needed where only two
patterns are applied instead of the two original insertions containing in total 13 patterns.

Figure 8: Long-Tail: Controller Module
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4.1 Cost estimation

Testing cost is currently the dominating factor when it comes to a device’s cost. Therefore, we measure
the effectiveness of our method by calculating its cost optimization in comparison to the traditional test
methods. The cost function we use to calculate the cost of the multi-layer simulation is described as
c(n, p) = PpassFTi

× (p× x1 + n× x2) + PpassSLT
× b× (y1 + t× y2) + z1 × (1− Y 1−fcovFT+SLT ).

where

x1 = 10: FT cost per pattern per device

x2 = 100: FT cost per insertion per device

y1 = 1, 000: cost FT to SLT per device

y2 = 10, 000: SLT cost per test program per device

t : number of test programs (currently 1)

z1 = 100, 000: cost per test escape

p : FT pattern count

n : number of insertions: d p
maxp

e

b : boolean variable ∈ {0, 1}
A device can only enter a testing phase if it has passed the previous one. Which means we need to include
the conditional probability of passing the previous insertion. We differentiate between the probability of
passing a test insertion and Ppass and Pfail for each test insertion whether in FT or in SLT.

5 Conclusion and Next Steps

We have presented our work regarding SLT and the framework being built to facilitate the application
of SLT. We showed one application of the framework to reduce the number of patterns applied in FT
insertion which in turn reduces the cost of testing. We also included the cost function estimation which
we intend to refine in order to generate accurate cost estimations. Moreover, as soon as the last challenge
is overcome within the framework, it will offer a tool for further investigating complex design models as
well as more elaborated fault models to explore possible reasons for marginal defects.
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