
Self-Learning Tuning for Post-Silicon Validation

Milestone Report – GS-IMTR

Peter Domanski

October 5, 2022

Advisor / main examiner: Prof. Dirk Pflüger
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1 Introduction

Electronic devices occupy every aspect of our daily life. Therefore, it is crucial to verify the correctness
and reliability of these devices, especially in safety-critical applications. Post-Silicon Validation (PSV)
refers to validation efforts of manufactured circuits (prototypes) in the real application environment
before sending the design to mass production [1, 2]. Ensuring functional correctness, checking security
properties, and meeting performance constraints under operating conditions are important tasks in PSV.
Moreover, robustness, e.g., against process variations in semiconductor manufacturing, is crucial for high
yields in mass production [3]. Note that we use the terms circuits and devices interchangeably to describe
the in-silicon manufactured prototype.

PSV is a crucial challenge for modern circuits with highly complex designs. Due to the increasing
complexity, PSV is getting an expensive bottleneck because existing techniques cannot cope with the
complexity of modern and future circuits [4, 5]. According to the study in [6], PSV can take up to 70% of
the time, effort, and resources used during the design process. Moreover, only a few systematic techniques
exist to solve the tasks in PSV. A particularly challenging task in PSV is robust performance tuning.
It is necessary because designs rely on tuning to compensate impacts of process variations and non-
ideal design implementations. Tuning implies setting variables and registers, so-called ”tuning knobs”
(e.g., bias settings or adjustable currents and voltages)[7]. The number of such knobs is rising because
affordability is increasing in modern technologies. The aim is to set the tuning knobs such that circuit
parameters stay within specification limits and optimize performance goals. Furthermore, the tuning
knobs may be adjusted as a function of operating conditions, e.g., temperature or operating mode of the
circuits.

Robust performance tuning remains a complicated, bound-constrained, and mixed-type optimization
task. A first naive approach is to either use state-of-the-art gradient-based or derivative-free optimiza-
tion algorithms. Derivative-free methods are relevant in black-box optimization (e.g., PSV) because we
typically have no access to an analytical expression describing the behavior of manufactured circuits (sim-
ilar to black-box functions) [8]. Therefore, we cannot compute higher-order moments of the underlying
objective. However, applying state-of-the-art derivative-free optimization strategies to solve mixed-type
optimization problems results in approximate, point-wise solutions. Given strict timing requirements
in PSV, point-wise solutions remain inefficient because we need to re-run the optimization process for
changing operating conditions. Due to the complex nature of the optimization task tuning each run
of the optimization strategy can take a significant amount of time. Especially if we are interested in
adjusting tuning knobs for many different operating conditions, the total runtime of state-of-the-art
optimization strategies gets unreasonably large [7]. To avoid these pitfalls, we have proposed a novel
self-learning tuning approach that aims to learn a mapping from (operating) conditions to tuning knob
configurations. In this thesis, we call the mapping tuning law. We have proposed a combination of robust
surrogate-based modeling of the objective function tailored to tuning [9] and Reinforcement Learning to
train a flexible, robust, and efficient tuning law (optimization strategy) applicable in circuit-specific or
circuit-independent tuning setups.

2 Background

2.1 Surrogate Modeling for Black-Box Optimization

In many real-world optimization tasks, objective functions are black-boxes that are very expensive to eval-
uate, e.g., complex computer simulation programs. In such settings, analytical or derivative information
are not available or impractical to calculate.

A common approach to reduce computation times is to approximate the computationally expensive (black-
box) function with a more efficient model, so-called surrogates. However, we do not know which surrogate
model type will perform best for a specific application. Popular surrogate model types include radial basis
functions, kriging, support vector machines, Bayesian approaches, and Neural Networks. Independent
of the specific model type, the surrogate is usually used along with an optimization algorithm to search
for a (global) optimal solution to the optimization task. However, algorithms to solve surrogate-based
optimization problems are scarce and often designed for a specific application. Therefore, choosing a
suitable optimization algorithm is difficult and depends on many factors, including data types, complexity
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(e.g., number of function evaluations), and the formulation of the optimization task (e.g., constraint and
unconstrained tasks). A common choice in black-box optimization are derivative-free algorithms because
derivative information is not available, and the computational overhead is lower. For a k-dimensional
problem, computing the gradient and the Hessian of a function f(x) is, respectively, k-times and k2-times
as expensive as computing f(x) [10].

The general formulation of a mixed-type optimization problem is given in Def. 2.1. For these problems
types, which are especially relevant in real-world applications, only few approaches exist (e.g., [11, 12]).
Additionally, existing work is mainly designed for a specific application increasing the difficulty of selecting
a suitable surrogate model type and optimization algorithm for different applications.

Definition 2.1 (Mixed-type bound-constrained optimization problem) Let the objective func-
tion f : RD1 × ZD2 → R denote the (expensive) black-box function with optimization variables z⃗T =(
z⃗1

T , z⃗2
T
)
, where z⃗1 ∈ RD1 denote continuous variables and z⃗2 ∈ ZD2 denote discrete variables.

The bound-constrained optimization task (here: minimization task; maximization can be reformulated by
minimizing the negative objective function) is defined as:

min
z⃗

f (z⃗)

s.t. cj (z⃗) ≤ 0 ∀j = 1, . . . ,m

−∞ < zl1,k ≤ z1,k ≤ zu1,k <∞ ∀k = 1, . . . , D1

−∞ < zl2,l ≤ z2,l ≤ zu2,l <∞ ∀l = 1, . . . , D2

z⃗1 ∈ RD1 , z⃗2 ∈ ZD2 , z⃗T =
(
z⃗1

T , z⃗2
T
)
, Dimensionality D = D1 +D2

2.2 Learning to Optimize

Learning to optimize (L2O) is a field of research that aims to leverage machine learning to develop new
optimization algorithms or improve upon existing methods. Additionally, automatizing the laborious,
iterative process of hand engineering optimization methods significantly reduces design efforts allowing the
implementation of task-specific algorithms that can improve convergence speed (given a similar amount
of computing budget) or final objective value. Instead of a theory-driven design for a specified class
of optimization problems, L2O uses a data-driven approach to learn the algorithm by observing its
execution (optimization performance) and shaping the optimizer according to the type of problem (e.g.,
task distribution). Therefore, we cannot specify (theoretical) performance guarantees for the learned
optimization algorithms, which is the main reason for the current lack of a solid theoretical basis for L2O
[13].

L2O has the potential to break the limits of analytical optimization methods. It is especially beneficial
if we repeatedly solve certain types of optimization problems with similar data distributions. However,
L2O typically falls short on out-of-distribution tasks. Applications of L2O include ℓ1-minimization [14],
neural network training [15], black-box optimization [16], and combinatorial optimization [17]. Moreover,
many application areas could benefit from L2O methods, ranging from computer vision to computational
biology. Nonetheless, existing works mainly focus on (unconstrained) continuous optimization algorithms.
Training of L2O approaches usually implies a time-consuming offline stage. After training, the (online)
application of the autonomous algorithm is typically more efficient concerning the total time consumption
of the optimization process [18].

A popular approach to L2O is to use Reinforcement Learning (RL) to train an optimization algorithm
that is represented by a RL policy, e.g., in [13]. The general structure of an optimization algorithm is
given in Alg. 1. The optimizer is specified as a function π that depends on the function values or history
of points in the domain of f . In the RL setting, we reward algorithms that converge quickly and penalize
those that do not.

Related research areas to L2O are hyperparameter optimization, AutoML, algorithm configuration, learn-
ing to learn (meta-learning), and learning-augmented algorithms. Many approaches in these areas either
try to determine optimal configurations for existing algorithms (search over different instantiations of
an algorithm) or automatize steps in the ML life cycle. However, L2O is the only approach that allows
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Algorithm 1 Optimization methods with RL, see [13]

Require: Analytical description or model of objective function f
x(0) ← random point in the domain off
for i = 1, 2, . . . do

∆x← π
(
f, x(0), . . . , x(i−1)

)
if stopping condition is met then

return x(i−1)

end if
x(i) ← x(i−1) +∆x

end for

searching the space of all possible algorithms directly. Thus, the autonomous algorithm may identify
patterns in the task distribution data and discover more effective strategies than classical algorithms.

2.3 Deep Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning designed for sequential decision-making tasks.
It is about a decision maker, the so-called agent, who interacts with an environment to learn an optimal
behavior from information collected by trial and error [19]. The RL problem setup is fundamentally
different from supervised and unsupervised learning because it is usually impractical to obtain examples
of the desired behavior that are correct and representative of all possible situations [20]. Moreover, RL
is goal-directed, meaning we aim to learn from interaction instead of trying to find hidden structures
in the data. In the RL setting, the agent receives a state st in a state space S and selects an action
at from an action space A following a policy π (at|st) (e.g., mapping from state st to action at that
describes agent’s behavior) at each discrete time step t. Due to the selected action, the agent receives a
feedback, e.g., scalar reward rt ∈ R and the next state st+1 ∈ S of the environment. Defining a reward
signal to formalize the agent’s goal is a key idea of RL and allows one to acquire new behaviors and
skills incrementally [21, 22]. The agent’s goal is to maximize the (discounted) cumulative reward, also
called return Rt over time. Formally, the RL setting is defined as a Markov Decision Process (MDP) see
Def. 2.2. In general, a process has the Markov property if the future of the process only depends on the
current state of the environment. A so-called trajectory is a sequence of state, action, and reward pairs.

Definition 2.2 (Markov Decision Process) A MDP is a discrete time stochastic control process de-
fined as a 5-tuple (S,A, T ,R, γ) where:

• S is the state space

• A is the action space

• T : S ×A× S → [0, 1] is the transition function (set of conditional transition probabilities between
states, e.g., P (st+1|st, at))

• R : S×A×S → R is the reward function, where R is a continuous set of possible rewards Rmax ⊆ R
(e.g., reward distribution P (rt|st, at))

• γ ∈ [0, 1) is the discount factor (e.g., scale down future rewards after each step such that total sum
remains bounded)

The formulation as a MDP provides an abstract and flexible framework because time steps are not fixed
intervals, and actions can be high- or low-level controls of environmental parameters. Similarly, states
can include low-level sensations or high-level descriptions of the environment’s state. Additionally, the
formulation allows continuous and discrete state and action spaces. The agent aims to maximize the
expectation of the long-term return (cumulative discounted future reward) given in Eq. 1. Thus, a
function that predicts the expected return given the state st for the current policy is often used to learn
the optimal policy. In addition to this so-called V-value function (see Eq. 2), the Q-value function is often
of interest because it allows to obtain the optimal policy π∗ directly, see Eq. 3 and Eq. 4 respectively.
The Q-value function describes the expected return for selecting action at in state st following the current
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policy π.

Rt =

∞∑
k=0

γkrt+k (1)

V π(s) = E

[ ∞∑
k=0

γkrt+k|st = s, π

]
(2)

Qπ(s, a) = E

[ ∞∑
k=0

γkrt+k|st = s, at = a, π

]
(3)

π∗ (s) = argmax
a∈A

Q∗ (s, a) (4)

with Q∗ (s, a) = max
π∈Π

Qπ (s, a)

The success of modern RL approaches is mainly due to the combination of Deep Neural Networks (DNNs)
and RL, so-called Deep RL (DRL). The usage of DNNs (e.g., Convolutional Neural Networks (CNNs) or
Recurrent Neural Networks (RNNs)) allows to automatically extract features and exploit the expressive-
ness and flexibility of DNNs, e.g., to address the curse of dimensionality and to reduce domain knowledge
significantly. Most commonly, DNNs are used to approximate the V-value function, the Q-value function,
and the policy π (optionally state transition function T and reward function R) which allows to directly
operate in high-dimensional state and action spaces. These abilities enable agents to achieve outstanding
performance in many real-world decision-making problems.

Today, many (Deep) RL algorithms exist. In the following, we only focus on on-policy learning. It has
stronger convergence properties compared to off-policy approaches but usually lower sample efficiency
because on-policy algorithms discard experience (e.g., stored in a replay buffer) that is not collected with
the current policy. A popular class of methods is policy optimization. Algorithms like REINFORCE [23]
or Proximal Policy Optimization (PPO) [24] directly optimize the parameterized policy π (a|s,Θ) and
update the parameters Θ by gradient descent on E [Rt]. DRL approaches have proven successful in many
areas, including games, robotics, finance, industrial automation, etc. Specific applications range from the
real-time adjustment of operation parameters on a petroleum refinery, automating cooling of data centers
to save energy, autonomous robots on assembly lines, financial trading, to self-driving cars. Recently, DRL
approaches have also been used to automatize the design process of optimization algorithms (learning to
optimize)[13].

Despite the success, Deep RL still has unique challenges and open problems: Firstly, the fundamental
exploration vs. exploitation trade-off. The main question is how to exploit the current best action to
maximize rewards vs. exploring the environment to identify better actions. Secondly, in contrast to other
areas of ML it is unclear how to transfer learned knowledge to different tasks (e.g., using transfer learning
to generalize to similar contexts). Additionally, sample efficiency, stability of training, multi-objective
reward functions, and catastrophic inference can be challenging aspects for Deep RL approaches. Finally,
the reward definition and the representation of actions and states can strongly affect the performance
increasing the difficulty designing suitable (Deep) RL approaches [25, 26].

3 Problem Definition

The problem of robust performance tuning in PSV is very intricate, especially with the increasing com-
plexity of modern circuits. In our application, we aim to optimize a user-defined (scalar) figure-of-merit
(FOM) that encodes aspects of the circuits, e.g., margin to specification limits, absence of errors, and
minimum power consumption. Starting point is a PSV characterization data set including 9 (prototype)
circuits with 100k (uniformly distributed) data points per circuit. The circuits under test (CUTs) are
representative of the process spread. A more detailed description of the data is given in Tab. 1.

Given the characterization data set, various quantities must be modeled. Firstly, we need to model the
FOM for a specific circuit d. Secondly, we need a tuning model to compute optimal tuning configurations
as a function of the tuning conditions. Additionally, in production, a circuit-independent FOM model
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is of interest. The overall problem definition is given in 3.1. It typically includes multiple aggregations,
followed by (mixed-type) surrogate-based optimization.

Definition 3.1 (Robust performance tuning) Defining the overall problem, we are using the follow-
ing notation:

• Device variables d, e.g. device IDs

• Test case input variables x⃗, e.g., operating conditions like voltages, temperature, device modes,
and tuning knobs

• Test case output variables y⃗, e.g., measurements from external instruments, status information,
and on-chip measurements values

• Figure-of-merit f , e.g., computed from measurement outputs which quantifies how well a specific
test case performs

• Aggregated FOM F
(
d, c⃗, t⃗

)
• Achievable worst-case robust FOM F ∗

The test case inputs are split according to Eq. 5 where x⃗− are the remaining input variables.

x⃗ =
(
c⃗, t⃗, x⃗−) (5)

Combining the aggregation and optimization steps, we get the following formulation:

t⃗∗ = t⃗∗ (d, c⃗)

= argmax
t⃗

F (d, c⃗, t⃗)

= argmax
t⃗

min
x⃗−

f
(
d, c⃗, t⃗, x⃗−) (6)

The goal is to design an autonomous training and hyperparameter optimization approach with minimal
user intervention. Additionally, the proposed framework should minimize computing time and enable
optimization of the FOM metric as a function of tuning conditions in high-dimensional settings (up to
100 variables).

Features Data Types Values Description
Device ID d integer 0 to 8 Unique ID; identifies devices

Corner categorical {TT, 3FF, 3SS} Process corner of devices
c1, . . . , c4 continuous -1.0 to 1.0 Tuning condition variables

t1 integer 2 to 13 Tuning knobs for configurable register 1
t2, t3 integer 0 to 15 Tuning knobs for configurable register 2, 3
t4, t5 integer 0 to 3 Tuning knobs for configurable register 4, 5
t6, t7 integer 1 to 2 Tuning knobs for configurable register 6, 7
y1 continuous -21.765 to 8.777 Measured result 1 of devices
y2 continuous -21.915 to 7.912 Measured result 2 of devices
y3 boolean {False, True} Measured result 3 of devices
y continuous -20.602 to 7.387 Aggregated FOM value (here: aggregation of y1, y2, y3)

Table 1: Description of a real-world PSV characterization data set

4 Methodology

4.1 Soft-Aggregation Surrogate Model

In PSV, available data sets typically consist of a limited set of prototype circuits representative for the
spread in the manufacturing process. Here, the task is to approximate the underlying function of the
data with multiple learning algorithms, each trained on a circuit-specific subset. Furthermore, we expect
an unknown number of subsets to describe functions with very different characteristics, e.g., due to
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Figure 1: Outlier Robust Stacked Aggregation. The overview shows the selection, the combination process, and
the loss calculation (see Eq. 7).

process variation or defects. Corresponding ensemble members, so-called outliers, can heavily influence
the approximation. Thus, we have proposed a novel ensemble learning technique called Outlier Robust
Stacked Aggregation (ORSA) [9]. It aims to find an approximation that is robust to outliers and represents
a non-pessimistic worst-case or non-optimistic best-case approximation, respectively. Therefore, we define
a ’soft-min’ or ’soft-max’ function in place of a maximum or minimum operator. We train a NN to learn
this ’soft-function’ in a two-stage process. First, we select a subset of ensemble members with the best
or worst predicted performance. Second, we combine these members and define a weighting that uses
the properties of the Local Outlier Factor (LOF) [27] to increase the influence of non-outliers and to
decrease outliers. The weighting ensures robustness to outliers and makes sure that approximations are
representative for the majority of circuit-types. Fig. 1 shows an overview of the approach.

LORSA =

k∑
i=0

wi ∗ (yiout − ypred)
2

=
1∑k

j=0 LOFj

k∑
i=0

1

LOFi
∗ (yiout − ypred)

2

(7)

The combination process is very flexible because it allows arbitrary selections of different types for the
circuit-specific models (model 1, . . . , model N in Fig. 1). The loss LORSA given in Eq. 7 is used to
train the (stacked) Aggregation NN. It is a weighted least-square formulation with a weighting that uses
properties of the LOF to ensure robustness. The weights wi in Eq. 7 are calculated as the reciprocal of
the LOF and normalized such that

∑
i wi = 1. Note that there is no ground truth for the approximation

task. Thus, ORSA is an unsupervised ensemble learning method. Conventional approaches to mitigate
faulty circuits depend on outlier detection and neglecting faulty circuits. In contrast, our approach does
not discard whole circuits and thus can exploit more data than possible otherwise [9].

4.2 Self-Learning Tuning with Reinforcement Learning

In this section, we introduce a novel approach to the problem of robust performance tuning. The self-
learning method is based on DRL and aims to automatize the tuning process. Additionally, it is scalable
to high-dimensional tasks - which is especially important to cope with the increasing complexity of
modern circuits - and flexible because we learn a mapping from given conditions to optimal tuning
configurations. In our work, we call this mapping tuning law. Learning a tuning law goes beyond current
state-of-the-art approaches that only approximate point-wise solutions, which are very inefficient given
the tight schedule in PSV. However, the longer training time of learning-based methods is affordable for
the benefit of fast inference (prediction) in later stages. The proposed approach applies to circuit-specific
and circuit-independent tuning settings.

We are following the path of learning to optimize and leverage DRL methods as in [16, 28, 29, 30] to train
a problem-specific optimization algorithm. We define robust performance tuning as a RL task to enable
learning of optimization methods for mixed-type problems (see Def. 2.1 and Sec. 2.1). Similar to [16],
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Figure 2: Self-learning tuning in PSV. The tuning law is learned iteratively within the RL loop. We use a
performance measure (aggregated from measurement outputs, e.g., FOM) of the circuits to train and
evaluate a tuning algorithm in form of a RNN.

the objective function is a black box. In our application, the objective is solely described by the given
data set and the surrogate model, respectively. Instead of optimizing network parameters we aim to find
inputs that produce the best outputs (in terms of specification goals) without relying on gradients or
approximations of gradients resembling the scenario of black-box adversarial attacks, e.g., in [31]. Fig. 2
shows an overview of our approach. We iteratively train an optimization algorithm on a surrogate model
in the outer reinforcement learning loop. The trainable optimization model itself iteratively improves the
performance measure of the surrogate in the inner loop. Performance improvement is used as feedback
(e.g., reward) to the outer training loop. The surrogate model allows us to formulate tuning as an iterative
optimization process and train the tuning law efficiently in the reinforcement learning loop. The final goal
is to find the solution to Eq. 6 (see Sec. 3). The reward definition we use reflects specified optimization
goals of the circuits, e.g., FOM. The computations of our methodology are summarized in Alg. 2:

Algorithm 2 Self-Learning Tuning

1. Given current state s⃗t,NN := {(x⃗t−1, f(x⃗t−1))} or
s⃗t,RNN := {(x⃗t−1, f(x⃗t−1), h⃗t−1)}
propose update x⃗t

(⃗ht−1: internal state of RNN at time step t− 1)

2. Observe response of environment, e.g., f(x⃗t)

3. Update internal statistics to produce s⃗t+1 and rt+1

The update rule (e.g., described by a DRL agent) in 1. step is defined by a (R)NN parameterized by
Θ, such as fθ,(R)NN := s⃗t → x⃗t. The architecture consists of a two-layer LSTM network with tanh
activation units. The parameters Θ are updated by applying reinforcement learning algorithms, e.g.,
REINFORCE, to maximize the cumulative reward. For similar computing budgets, our approach can
have superior performance showing a much faster convergence speed than classical methods, especially
for difficult optimization problems. Thus, learning to optimize has the potential to overcome the limits
of current analytical methods in PSV [7].

5 Experiments and Results

In the following, we present the experiments and results of our methodology. We will compare the results
of the real-world data set (see Sec. 3) with artificially generated data because we typically have no ground
truth about defective device IDs or optimal achievable performance (e.g., FOM) in the real-world scenario.
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Figure 3: Results of the selection and weighted combination process for the artificial data set.

5.1 ORSA

5.1.1 Artificial data set

This section summarizes the results of our ensemble learning technique ORSA using an artificially gen-
erated data set. We generate the data with the expertise of Advantest and the following properties:

• Data of 30 circuits with different characteristics, 10k samples per circuit

• 4 outlier circuits (IDs: 0, 20, 21, 26) representing different defective behaviors, e.g.,

1. Constant offsets

2. Smooth, Gaussian-shaped noise (non-zero in random area of the parameter space)

3. Probabilistic offsets (constant offset with probability p1 < 1 and no offset with 1− p1)

4. Probabilistic offsets with randomly scaled amplitudes

Fig. 3 shows a qualitative analysis of our method. Fig. 3a visualizes the frequency with which ensemble
members are selected for k worst circuits. We observe that the outlier circuits are among the most
selected devices. Moreover, the effects of the different outlier types get more subtle from 1. to 4. and
thus more difficult to detect. This effect is visible in terms of the total number of worse cases as well
as in Fig. 3b showing how much our outlier robust loss formulation LORSA in Eq. 7 reduces the loss
contribution of individual circuits. The more subtle the effects of outlier get, the smaller the reduction
in loss contribution. However, it is visible that our approach can detect the effects of outliers and reduce
their contribution in the worst-case approximation. Fig. 4 visualizes the prediction of the Aggregation
NN for different hyperparameters. It is noteworthy that our method can learn a robust approximation
between the absolute minimum and the average of circuit outputs depending on the value of k. For k = 1,
we get the minimum, and for k = 30, we get the average (k defines how many circuits to select in each
step).

5.1.2 Real-world data set

Fig. 5 and Fig. 6 visualize the same analysis as in the previous section. Instead of artificial data, we
use a real-world data set (see Sec. 3) provided by Advantest. However, we have no ground truth of
outlier circuits and their characteristics. Whereas the output prediction of the Aggregation NN in Fig. 6
looks similar w.r.t. robust worse-case approximation, we observe different circuit characteristics in Fig.
5. Fig. 5a does not clearly show outlier circuits. Instead, we may have different classes of devices that
represent bad, typical, and good performance. Together with the individual loss contributions in Fig. 5b,
we may conclude that ID 6 is an outlier similar to constant offset outliers. Other circuits with reduced
loss show subtle effects similar to outliers with probabilistic offsets. Again, this aligns with the expertise
of Advantest.
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Figure 5: Results of the selection and weighted combination process for the real-world data set.
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Figure 6: Output prediction of the Aggregation NN (see Fig. 1) for 100 random input samples of the real-world
data set. We compare different hyperparameter settings of our method with the minimum and average
of the circuit outputs.Depending on k, our method can learn an optimistic and representative worst-
case approximation with a suitable trade-off between minimum and average.

5.2 Tuning Law

In general, multiple tuning settings are possible. We can either learn a circuit-independent or a circuit-
specific tuning law. In both cases, we can define a parameter-dependent (e.g., dependent on conditions
c⃗) or a parameter-independent tuning law. In the following sections, we focus on circuit-independent and
parameter-dependent tuning laws because they allow the highest increase in efficiency and flexibility. In
addition, they are less expensive than circuit-specific tuning laws but probably suboptimal w.r.t. specific
circuit characteristics.

5.2.1 Analytical objective functions

In this section, we present the results of a parameter-dependent tuning law for an analytically known ob-
jective function f(t, cfree) = −(t−sx(cfree))

2+sy(cfree) with arbitrary functions sx(cfree) and sy(cfree)
that cause a shift in x and y direction dependent on the value of cfree. Fig. 7a shows the objective for
sx(cfree) = −4(cfree−1)2+4 and sy(cfree) = 8−7cfree. The goal is to find t∗(cfree) = argmax

t
f(t, cfree)

which is shown in red, see Fig. 7a. Fig. 7b visualizes the difference between predicted optimum and
ground-truth value. In this low-dimensional setting, we can visually analyze that our tuning law almost
perfectly matches the true optimum values after 10k training iterations.

5.2.2 Real-world black-box objective functions

In the following experiments, the objective function is no longer a closed-form expression but a black
box given by the real-world data set (e.g., test measurements of the circuits). As described in previous
sections, we use this data set to learn a surrogate model (here: soft-aggregation model) of the black-box
objective and a corresponding tuning strategy. Fig. 8a and Fig. 8b visualize the results after 10k training
iterations of a circuit-independent but parameter-dependent tuning law for one or respectively two tuning
conditions c1 and c2.

Both plots in Fig. 8 show almost constant performance w.r.t. the achievable FOM. Moreover, tuning
results are almost independent of the tuning conditions c1 and c2. The analysis of the remaining in-
put variables x⃗− in Eq. 6 reveals that worse-case values are distributed in areas around corners of the
parameter space. These observations match the expertise of Advantest. Furthermore, both plots show
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Figure 7: Results of tuning law for quadratic objective function.

(a) Parameter-dependent tuning law t∗ = t(c1) (b) Parameter-dependent tuning law t∗ = t(c1, c2)

Figure 8: Results of parameter-dependent tuning laws for real-world data.

that the predicted tuning knobs, which are in most parts constant, match the given variations in circuit
characteristics well and fulfill the specified requirements, e.g., FOM larger 1. Finally, modeling the tuning
law with a DNN or RNN allows a significant speed up after the initial training.

6 Conclusion and Outlook

We conclude that our self-learning tuning approach is suitable in learning a tuning law and solve the
task of robust performance tuning in the given real-world setting. The proposed method fulfills the spec-
ified requirements: the soft-aggregation surrogate ensures robustness, and represents a non-pessimistic
approximation, and the RL formulation allows us to learn parameter-dependent tuning laws that are fast
and efficient in inference (e.g., prediction). The next steps of our work include:

• Explore scalability of our methodology w.r.t. high-dimensional optimization tasks (analytical bench-
mark functions and real-world data sets) and an increased number of operating conditions

• Explore influence of different surrogate models in the subsequent optimization process

• Increase efficiency of the DRL training and explore transferability to similar tuning settings

• Analysis of learned tuning law, e.g., sensitivity analysis or inner working mechanisms

• Apply the proposed approach to different tasks, e.g., calibration of parameterized transistor models
(collaboration with P9)
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• Integration of our software library into Advantest’s Cloud Solutions which allows possibility to
include variable selection approach of P6

• Interactive visualizations that allows validation engineers to interact with the learning process of
the tuning law, e.g., to include expert knowledge or interrupt the learning process (collaboration
with P2)
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