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1 Introduction

Our modern electronic devices and digital infrastructure strongly relies on the correctness and robust-
ness of integrated circuits and semiconductor chips. Ensuring correctness and robustness of these is a
highly challenging task that requires specialised and equally reliable hard- and software. Advantest!® is
a leading manufacturer of Automated Test Equipment (ATE) which is used exactly for that purpose.
However, due to the growing chip complexity and because transistor size shrank so much that physical
limits are approached, upcoming chip generations require novel and improved methods for test and reli-
ability. Therefore, Advantest and the University of Stuttgart formally established in 2019 the Graduate
School Intelligent Methods for Test and Reliability (GS-IMTR).? Ten projects aim to improve semicon-
ductor testing from different angles and form collaborations for interdisciplinary challenges to profit from
expertise of different institutes [1].

This milestone report summarises the research work done so far and the program ahead of project P8:
Software Test Suite Optimisation for Complex Software Systems. In the context of the GS-IMTR, project
P8 aims to improve the operating system and development environment of the ATE, i.e., the software
that is used to write and execute chip test programs. The newest generation of that software is called
Smartest8, a highly complex software system that is used to compile and load chip test programs into
the tester hardware, assist developers to write and debug them, enable the use of various test head cards
to perform measurements of, e.g., signals and voltages, and many other features. The software contains
more than 16 million lines of code, is written in multiple programming languages, is thoroughly tested,
and includes a diverse set of modules ranging from low-level driver code to high-level code for graphical
user interfaces. Correct operation of that software is vital for the entire chip manufacturing and testing
process. In particular in times of chip shortages, any outages or interruptions due to malfunctioning
software is unacceptable and has serious economical impacts.

This PhD project targets to develop and evaluate a novel approaches to optimize software test suites for
correctness, robustness, and performance. In particular, we want to improve testing of such a complex
software system but also similar ones in general and work on the following three research topics:

Test Suite Analysis: The code base of complex software systems naturally grows over time. The
respective test suites also evolve and are written by many developers who have different experience levels
and deviating coding styles. Development practices usually change over time as well, which additionally
influence how code and tests are written. Thus, quality and effectiveness of existing tests vary, but code
coverage alone can be misleading to evaluate the effectiveness of a test suite. Mutation testing [2] is
a technique to address this issue. We investigate how usable mutation testing for large test suites is
and which pieces are missing for wide industry adoption. Besides functional test suites, a large set of
performance regression tests also exist that require advanced analysis techniques to quickly find the root
cause for performance losses in new software releases. Therefore, we also want to investigate methods
and techniques of how to improve analysis of such benchmarks.

Test Case Generation: In the context of Smartest8, most of the tests are written by hand. These type
of tests are particularly strong because they incorporate the knowledge of the developers. However, the
final chip test programs are written by customers of Advantest and are executed by Smartest8. These
chip test programs are very versatile and are not available to the developers for intellectual property
reasons. Because developers only have a limited time budget for testing, this poses the threat to miss to
test some important system boundaries and combinations of features which lead to eventually overlooking
software faults that are then found by the users of the software. To prevent late software fault detection,
we investigate methods of how to automatically generate test cases. In particular, we aim to use and
advance fuzzing, which has proven to be a very successful technique in finding real world software faults [3].

Combination of Manual and Generated Test Cases: To find the optimal process to create a cost
efficient and fault-revealing test suite, we need to understand what the strengths, limitations, and overlaps
of manual and automated test generation approaches are. We want to clarify these points in this project
but also combine both approaches and see whether they work well together. For that, we want to create
generators for fuzzing from existing hand-crafted unit tests and metamorphic tests [4] by incorporating
the expertise of developers and automated tests from fuzzing approaches.
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2 Mutation Testing

Software test engineers and developers mainly rely on code coverage to conclude to which extent a
software system is tested. However, many previous studies [5] have shown that code coverage can be a
misleading measure to reason about how effective the existing test suite actually tested the executed lines
of a software. One technique to address this issue is mutation testing.

Mutation testing consists mainly of two steps: First, the software under test is slightly modified in a
controlled manner, i.e., “mutated,” such that it behaves differently from the original software. This
version of the software is metaphorically called “mutant.” In the second step, the existing test suite is
re-run to check whether any test fails and, thus, detects the different behaviour. If no test case fails, it
is said that the mutant “survived”. Otherwise, it is said the mutant is “killed.” This way, the procedure
detects code that may have coverage but is not really verified to work the expected way. In particular,
test suites for regression testing that kill the majority of mutants are particularly strong in detecting
software faults. Related work [6, 2] describes mutation testing as an optimisation problem where the
test suite should be enhanced towards a mutation score of 1. The mutation score is the number of killed
mutants divided by the total number of mutants.

One major challenge of the technique is the vast amount of mutants that are generated by tools that
implement it. Famous examples for Java tools are PIT [7], muJava [8], or Javalanche [9]. Traditional
mutation testing performs mutations on an instruction level. For example, comparison operators like
== may be changed to !'= or > to >=. The number of mutants that are produced that way is usually
overwhelming for developers, which often leads to rejection in using the technique [6].

To reduce the number of generated mutants, Niedermayr, Juergens and Wagner introduced extreme
mutation testing in 2016 [10]. In contrast to traditional mutation testing, extreme mutation testing
mutates whole methods instead of instructions, which is also the reason why it is called “extreme.” The
idea of the approach is to empty method bodies and replace return values with default values. If still no
test case detects these drastic code changes, then the mutated method is considered to be “pseudo-tested”
because it can be entirely removed without changing the test outcome. Categorizing methods this way is
also easier to comprehend than to analyse why an instruction-based mutant survived. Furthermore, since
the number of methods in a software project is normally much smaller than the number of instructions,
the number of mutants is much smaller as well. However, this performance gain comes at the expense of
loosing precision.

A previous study of Niedermayr, Juergens, and Wagner [10, 11] showed that pseudo-tested methods are
very common, even in well-tested software projects. In total, 19 open-source projects were studied and
each contained pseudo-tested methods. The median proportion of pseudo-tested methods was about
10%. Vera-Pérez, Monperrus and Baudry [12] confirmed that observation in their study where more than
28,000 methods were analysed. However, in the same study, lead developers of three software projects
were interviewed, and it was found that only 30 out of 101 pseudo-tested methods were considered to
be relevant enough to create a new test case for them. These findings challenged the usefulness of the
technique in practice.

For this project, we followed that stream of research and put extreme but also traditional mutation testing
as techniques to analyse the strength of a test suite into focus. For that, we conducted two case studies
on Smartest8. The goal of the first case study [13] was to find out how the existing tool PIT performs
in practice when used with both supported engines: Gregor for traditional and Descartes for extreme
mutation testing. We also wanted to find out what prevents wide adoption in industry. At that time,
Smartest8 was already tested by more than 11,000 unit tests and the number of tests continues to grow,
thus, making it a good target to evaluate mutation testing. Besides running mutation testing, we also
did a qualitative analysis of 25 pseudo-tested methods and discussed these methods with two experienced
developers to triangulate our case study results and conclusions.

Our main findings of this study [13] include:



e Pseudo-tested methods are relevant for developers, but not every pseudo-tested method
justifies the additional effort to enhance or write further tests for it.

e The execution time difference between traditional and extreme mutation testing hardly
matters in practice, but their required times to comprehend and analyse detected issues
does matter.

e It does make a difference at which point in time, in the development process, mutation
testing is applied.

The first finding confirms the observation made by Vera-Pérez, Monperrus and Baudry [12] in their study.
That is, pseudo-tested methods reveal issues that developers want to know about so that they can act
upon. However, some of these methods are meant to stay, as they are either not important enough or out
of scope. For example, testing whether a logging-method prints the correct log-message is not considered
worth testing. This is similar for some cases where a method is executed as a side effect of the unit
test that actually targets to test a different method. Finding that an assertion in a unit test is missing,
however, is very well noteworthy to act upon.

The second finding regarding the execution time of both approaches was very surprising, since we ex-
pected a large difference in execution time between both techniques. Extreme mutation testing finished
in 13 minutes and was about three times faster than its traditional counterpart, which finished in 37
minutes. Albeit this difference seems large, it barely matters in practice if executed asynchronously in
a development pipeline that builds and tests the software project. Both times are in the order of min-
utes and therefore negligible when analysing their findings in a separate session at a later point in time.
Considering the large amount of unit tests for Smartest8 this difference becomes even less significant for
smaller software projects. In the tool demonstration of the extreme mutation testing engine Descartes
by Vera-Pérez, Monperrus and Baudry [14] the reported difference was often in the order of hours. We
were only able to reproduce this difference in execution time when enabling all traditional mutators of
the default engine Gregor. This is, however, not recommended and not the default setting of PIT.

In contrast, the time to analyse detected issues by both techniques noticeably differs. Out of 7,989
traditional mutants, we found that 2,176 mutants survived. Out of 2,041 methods, we found 291 to be
pseudo-tested. The time to analyse all issues with each technique could only be estimated. However, it is
evident that developers have more than a seven times higher workload by using the traditional approach
compared to the extreme approach when looking at absolute numbers. In fact, pseudo-tested methods
additionally have the advantage of being pre-analysed. This means, that it is easier to comprehend why
a method is pseudo-tested than to deduce why a traditional mutant survived. Therefore, we concluded
that, in terms of time investment, extreme mutation testing is superior.

The last finding originated from the interview with the developers. When we asked in which situation,
during development, pseudo-tested methods would be most likely addressed, the answer was: while
writing unit tests. This differed from other industrial studies like the ones at Google [15, 16] where
mutation testing is only applied during code review. This means that many pseudo-tested methods
would be addressed during unit testing, as the effort is considered low enough to fix them at that point
in time, but too high after a code review.

After that first case study, we have seen that both techniques are fast enough to be executed and applied
to software projects in practice. Extreme mutation testing is faster to analyse, but some methods will
never be fixed because they are not important enough. We also observed that development processes
influence how the technique is used. These findings, however, revealed many research gaps: Since there
are pseudo-tested methods present that will never be addressed, we did not know how many traditional
mutants are generated on these methods that can be ignored as well. That would mean that using both
techniques in conjunction would seem reasonable to filter these traditional mutants. However, it was not
clear which issues the traditional approach can find, which the extreme one cannot. It was also not clear
under which circumstances developers were actually willing to enhance the test suite and, thus, to kill
mutants.

To fill these research gaps, we conducted a larger consecutive case study [17]. For that, we manually
inspected more than 1,000 mutants. We selected mutants in such a way to have samples for each of the
following categories:



Mutator types (e.g., conditional boundary, return values, negating conditionals, ...)

Return types (e.g., integer, strings, objects, ...)

Testing verdict (i.e., pseudo-tested or not pseudo-tested)

Mutant status (i.e., survived or killed)

We did not use runtime information by using, e.g., a debugger, but instead relied on the mutation testing
report, the code coverage information, the testing verdict, and the code with its documentation within
the scope of a method or class of the respective mutant. This approach enabled us to process many
mutants, categorize them, and detect patterns across a variety of different properties. Similar to our first
case study, we triangulated our results and conclusions by conducting a focus group with five developers.
We presented 9 pseudo-tested methods and 15 traditional mutants with their code coverage information
and asked if, how, and why an issue would be fixed.

Our main findings of this study [17] include:

e A noticeable amount of traditional mutants are placed on pseudo-tested methods that can
be ignored.

e The mutation score is neither a good metric for test adequacy, since it is strongly influenced
by redundant or equivalent mutants, nor has it any meaning for developers in practice.

e Developers only want to mutate important methods and not the whole code of the project.
e Developers would only perform mutation testing when a method has high code coverage.

e If a method raises an exception during a unit test then mutation of that method should be
performed with a different strategy.

e Similar to extreme mutation testing, traditional mutation testing can also be used to derive
testing verdicts.

e Tooling and reporting of mutation testing can be significantly improved when combining
code coverage and strategic application of traditional and extreme mutation testing.

We found that about 9% of all traditional mutants, resided on pseudo-tested methods. Thus, running
the extreme approach first, indeed, filters out a lot of traditional mutants that can be ignored. This
is advisable to do, because the overhead of running extreme mutation testing first seems negligible if
traditional mutation testing does not mutate these methods again.

Similar to other research work [18, 19], we found that there are a lot of redundant and equivalent mutants
generated that inflate the mutation score. Redundant mutants are different mutants that point to the
same issue. Equivalent mutants are mutants that have the same behaviour as the original program.
Due to redundant mutants, the score does not necessarily change linearly when killing a single mutant,
because additional mutants are also killed. Furthermore, the score cannot reach the desired value of 1
without detecting and removing equivalent mutants from the calculation, which is not possible without
manually analysing them. The focus group additionally revealed that not all mutants are relevant for
the developers, and some mutants are not meant to be killed. All these findings strongly challenge the
widely established assumption that mutation testing should be seen as an optimisation problem where
the mutation score must be maximized towards 1. We found compelling evidence to actually ignore it.

Interestingly, we have not seen any particular type of mutant that is more important than others for
developers. Instead, intentions to kill mutants and, thus, improving the test suite, depend on the im-
portance of the implemented method. For example, methods that process sensitive data or expose API
functionality for customers were consistently marked as important. Less important methods would only
be addressed when mutation testing results would be conveniently available during development.

We also spotted a noteworthy relationship between code coverage and mutation testing. Code coverage
information is always required by the developers to guide writing new unit tests. However, mutation
testing would only be applied to methods which have a high code coverage. Methods with low coverage
are usually known to be not tested very well and generating mutants on these methods does not add new
information. This could be a measure for a filter that could ignore these methods for mutation testing.



Yet, none of the well-known mutation testing tools [7, 8, 9] for Java implements such a filter. Furthermore,
we observed a lot of mutants that are not worth to be created when code coverage information is available.
For example, mutators that change a decision on an if-statement are perceived less meaningful if a code
coverage report shows that a particular branch of that if-statement is never executed. Mutators that
change that decision would lead to executing a previously not executed code block. Developers can
already read from the code coverage report that this branch was not thoroughly tested since not all
branches are covered. They would prioritise the growth of code coverage over killing mutants in these
cases.

From manual inspection of mutants, we found that mutation testing tools should consider test cases
where an exception is thrown by a method differently than the ones where none are raised. Some
mutants will always be killed if a method is expected to throw an exception. For example, if any test
case exists that raises a necessary exception, emptying the body of a method will always result in killing
that extreme mutant because the exception will never be raised. Technically, it is not a pseudo-tested
method. However, if the other tests would not detect that the code was removed, test oracles that verify
the application logic might be missing, which would make the method somewhat pseudo-tested. Thus,
differentiating these cases is reasonable.

Extreme mutation testing can derive pseudo-tested methods because the mutators are strategically ap-
plied. For example, because the whole method body is emptied it can be detected that a method is truly
pseudo-tested. Additionally, multiple mutators are required to also verify that different return values can
be returned without noticing it. However, if a method is not pseudo-tested then it does not mean that the
return value is actually meaningful. We found many methods where the return value was never verified
but the method body could not be removed. For these methods, a similar testing verdict like “return
values are not tested” could be concluded just by considering all traditional mutants that target return
statements of a particular method. In fact, we see a similar opportunity to do strategic application of
mutators for class fields. For example, a mutator could change a class field to a different value and keep
it constant to observe whether it influences test outcome. If all mutants survive then the usage of that
class field was never verified which implicates to write a test that relies on that field. Currently, each
instruction that uses that class field is just mutated and presented at different spots in a report with code
coverage. Bundling that information should save time and enable developers to quicker detect and judge
about issues.

We conclude that tooling and reporting of mutation testing should change to establish mutation testing
as a widely accepted concept of enhancing test suites. At the current state of writing, mutation testing
results are presented by PIT as code coverage reports that highlight whether mutants survived or were
killed. However, the concept of having a “mutant” is not an optimal form to describe a weakness in the
test suite. Having a report which tells that a method is “pseudo-tested” or that its “return value is never
verified” is much more comprehensible. Tooling should enable to focus on meaningful areas of code, avoid
unnecessary mutations, and produce testing verdicts that describe issues in the test suite instead of only
showing whether mutants survived or not.

3 Performance Regression Testing

Performance regression tests are expensive to establish but are vital to detect performance degradations
that are introduced with new software releases. First, a representative workload must be created. Second,
execution of the software must be split into measurable time sequences and instrumented. Third, the
former and the new software version must be executed and compared to each other to conclude whether
a performance regression occurred. Lastly, the root cause of the performance degradation must be
determined and remediated.

Any performance issues in Smartest8 may have a strong economical impact as it directly affects chip
manufacturing. Thus, Advantest already introduced such a setup to remediate performance regressions
before a new release version is shipped. Executing representative workload and comparing it to former
releases is automated. To instrument sequences inside the software, an instrumentation framework is in
place that is used by the developers by manually adding method- or function-calls. The instrumentation
framework uses a data format very similar OpenTelemetry.® This data format mainly consists of spans
and traces. Spans represent logical units of work that have a start- and a stop-timestamp and may point
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to a parent span. The reference to the parent span is used to indicate in which context a span is started.
A trace is a set of spans which logically belong together.

For this project, we focus on how to improve root cause analysis of a performance regression. All steps
before the root cause analysis are automated, but analysing the root cause itself is mostly manual work.
Some scripts already exist that calculate statistical metrics of traces which are then used to identify
issues. Furthermore, a visualization where spans are ordered on a time axis with their parent span
relations also exists. However, the current setup can still be improved by introducing other means to
analyse performance issues.

We are currently investigating additional visualizations to aid performance analysis like differential flame
graphs [20] or indented pixel tree plots [21] in cooperation with project P2 of the graduate school which
works on visual analytics for post-silicon validation [1]. The major challenge we face is to detect the root
cause of performance regressions by having to compare millions of spans that very often run in parallel.
This poses limits on how interactive analysis might be and we are not yet sure whether other heuristic
methods or models are more suitable. Thus, it remains an open research challenge that we want to
address in future work.

4 Fuzzing

Developers mainly use manually written tests to verify that a program works as expected. This approach
is very reliable in finding software faults and benefits from the expertise of the developer who is familiar
with the software under test. However, a developer is limited by the available time to write the test and
cannot test every possible combination of inputs to test a program. Therefore, many critical software
faults may remain undetected if solely relying on hand-crafted tests. Hence, there exists a need for test
automation techniques to close this gap. One technique that has proven to be very successful in that
area, by finding many real software faults, is fuzzing.

Fuzzing refers to automated (semi-)random input generation for software testing. The most prominent
variation of the technique is mutation-based greybox fuzzing. The approach starts with a small set of
diverse inputs for a program under test which is called “seed corpus.” Controlled changes, i.e., “mu-
tations,” are made to these inputs to create slightly different inputs which are then executed by the
target application. The target application then returns feedback in form of code coverage. If the mutated
input results in returning new code coverage then it is kept and added to the seed corpus. If the target
application crashes instead then a new software fault is found and, thus, saved in a different location.
Otherwise, the new input is discarded. This way, new inputs are gradually generated in an evolutionary
cycle that explore different code areas by the guidance of code coverage. It is a greybox technique because
it is categorized between whitebox and blackbox fuzzing. It does not analyse the code and derives new
input from it like in whitebox fuzzing. However, it does use feedback from the target application by
instrumenting it. Thus, it is different to blackbox fuzzing where no feedback from the target application
is obtained.

One famous implementation of that approach is the “american fuzzy lop” (AFL) which was written by
Michat Zalewski.* Research work made many improvements to the formerly described fuzzing loop and
used for that the AFL implementation as a baseline. This work either targeted to improve the feedback
that is returned by the fuzzer to find different classes of software faults [22, 23] or addressed input
generation and mutation to improve it for various file formats [24, 25]. One of AFL’s strongest limitations
is the mutation of highly structured inputs that require grammars. AFL only uses bit-level mutations
and a list of keywords to mutate inputs. This makes it hard for the fuzzer to surpass the parser code of
the target application and reach the actual application logic. Although other grammar-based coverage-
guided fuzzers emerged, they are either not build on top of AFL [26], which makes re-implementing
existing improvements a necessity, or they use parsers [27] to parse inputs first and secondly mutate the
derivation tree, which is not optimal in terms of performance due to the algorithmic complexity of the
parsing algorithm. Thus, generating structured inputs and incorporating it into existing fuzzers remains
an open challenge.

For this project, we focus on how to use this powerful test generation technique to find software faults in
Smartest8 and take advantage of past improvements to AFL. For that, we split our work in two different
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studies: The first study focused on creating a file format that can be mutated by AFL’s bit-level mutations
but would still result in providing syntactically valid input to the target application. This study is under
peer review at the time of this writing. In the next study, we will focus on fuzzing domain-specific files
of SmartestS.

For the first study, we aimed to surpass the parser stage and reach the main application logic of programs
by creating syntactically valid inputs. The idea was to keep AFL’s evolutionary design, that is proven
to work very well to find software faults, and make input generation very fast to compete with other
fuzzers later. We decided to only introduce a new file format with a respective decoder and keep the rest
of the fuzzer as it is. AFL would apply fast binary-level mutations to the new file format which changes
the input. However, the application would only see the structured (plaintext) input because the decoder
interprets the new file format first. To accomplish that, the file format must be affected by binary-level
mutations in a way to introduce changes after decoding while being able to keep most of the remaining
information that a parse tree encodes to preserve the evolutionary cycle of AFL. This is difficult because
defined structure in a file format may be mutated as well.

We eventually designed a file format on top of a context-free grammar, which is used to describe the
syntax of the input. To describe the context-free grammar we used ANTLR [28]. An ANTLR grammar
consists of multiple rules that describe which children a parse tree node may have. Internally, ANTLR
uses augmented transition networks (ATNs) [29] to describe these grammar rules. ATNs are recursive
state machines where each path from a start- to a stop-state represents a parse tree node. We encoded
these paths in a bit-sequence and introduced a chunk-based design to handle random mutations to the
file. We have implemented our decoder in Go.

To evaluate the effectiveness of our new approach we conducted an exploratory study by fuzzing SQLite.
We have chosen SQLite over Smartest8 for this study for various reasons. First, since SQLite is openly
available, this makes reproduction of our experiments easier for other researchers and fosters open science.
Second, ANTLR grammars for SQLite already exist and can be reused. Third, the software is already
fuzzed by the SQLite developers, which means that strong fuzzing seeds already exist that can be reused
for a realistic comparison. Lastly, it is similar to Smartest8 in a way that it is already very well tested
and accepts structured inputs.

We ran in total six 48h fuzzing campaigns with 80 CPU cores on the upstream branch of SQLite. Three
fuzzing campaigns used AFL with the plaintext encoding (default approach) and three fuzzing campaigns
used AFL with our newly implemented decoder and file format (encoded approach). The default approach
used the 512 already existing strong fuzzing seeds of the SQLite development team whereas our encoded
approach started by a single randomly generated input from the grammar. Our main conclusions of the
newly introduced file format and decoder are:

e The encoded approach finds complex bug triggers that require a combination of grammar
elements, which the default approach is highly unlikely to produce.

e The encoded approach inherits the evolutionary design of AFL and finds more paths than
the default approach.

e The encoded approach generates more valid inputs than the default approach which are
also more compact.

e The encoded approach is resilient to small grammar errors.

We found 3 distinct crashes in SQLite. One crash was caused by a falsified assertion inside the code
which was thought to be unreachable. I.e., the developers assumed that there does not exist an input to
reach that statement, which we have proven wrong. Another crash indicated a possible use-after-free bug
that was also found by one of their fuzzers. The last crash was a bug in the application logic with the
possibility of a wrong query result. This crash in particular had a very complex setup. A valid table must
be created. That table must have an index which involves the use of the COLLATE operator. Then, a
subsequent DELETE statement must reference that index in an expression where the index is part of the
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right operand of an “==" or “IS” operator.

Finding these crashes in SQLite was very astounding because SQLite has 100% branch coverage, millions
of existing test cases, many specialised tests, and the developers additionally run AFL and another



structure-aware fuzzer at all times.®> Their own structure-aware fuzzer is particularly designed to generate
SQL queries and alter databases. Yet, our approach has found two new crashes that have not been found
by all of these tests and one of it even revealed a logic bug. In addition to that, our decoder is not even
aware of semantics but only of syntax and still produced rather long semantically valid sequences. This
is only possible, because using the new file format with the decoder inherits the evolutionary design of
AFL. Ensuring syntax validity apparently leads to additionally finding more paths, which is a measure
used by AFL to distinguish code coverage.

Eventually, we analysed how valid our input files were. By “valid” we mean “semantically correct,” i.e.,
input files that surpass the parsing stage of the code. For that, we executed all inputs that were found
by both approaches and analysed their logs for syntax and other errors. We found less, but still some,
syntax errors in the seed corpus of the encoded approach. These syntax errors were caused by minor
errors in the grammar. However, in total, we found that the encoded approach produced more files that
were overall valid and have also observed that the number of executed statements was only a quarter
of the default approach. This shows that our newly developed approach is resilient to minor grammar
errors while still producing more valid and compact inputs.

Our results are very promising and a good basis for future work. In our next study, we will focus
on fuzzing domain-specific files of Smartest8 by using our newly designed file format and decoder. In
particular, we plan to target specification files of Smartest8 that are used to specify initial settings for
an instrument and, thus, test head cards that are used by the ATE. These properties include, depending
on the instrument, e.g., setting voltage levels or defining timings of a signal. Many of these settings are
optional or have a well defined range. We want to test whether the compiler of Smartest8 can actually
cope with all these different settings and guarantee correct compilation. We also see a chance to apply
metamorphic testing [4] to the found set of fuzzing inputs to have a better test oracle at hand than only
considering crashes. Besides that, we also plan to increase external validity of our work by comparing
it to other grammar-based coverage-guided fuzzers [27, 26] and investigate other feedback metrics than
code coverage alone from existing implementations that extend AFL [22, 23].

It is noteworthy to mention that we have an ongoing collaboration with project P5 of the graduate school
in that research area [1]. In fact, the project already uses our file format to generate code snippets in
order to create system-level tests for semiconductor systems.

5 Conclusions and Next Steps

We investigated how to evaluate the strength of a test suite by applying and comparing traditional and
extreme mutation testing. We concluded that both techniques are usable in practice but also found that
creating mutants is not the best way to describe a weaknesses in the test suite. If mutation testing is
strategically applied, similar testing verdicts as in extreme mutation testing can be created. Doing so
would improve acceptance of the technique since these testing verdicts are easier to comprehend than
to analyse mutants. To eventually conclude the research area of test suite analysis, we want to improve
root cause analysis of performance regressions. For that, we plan to work together with project P2 of the
graduate school to find out which visualization can cope with the large amount of (parallel) spans that
current performance regression tests create.

We created a new file format with a decoder to generate highly structured inputs for our fuzzing cam-
paigns. Our first exploratory study on SQLite showed that the approach is very effective in findings
complex bug triggers that originate from combinations of grammar elements. This is a good foundation
when we start to fuzz domain-specific files of Smartest8 and perform test case generation in a more com-
plex software system. We will continue to collaborate with project P5 of the graduate school that already
uses our newly designed input generation approach for system-level tests of semiconductor systems.

Lastly, we plan to combine automatically generated fuzzing results and use them for metamorphic testing
to see whether we can combine automated and manual test generation that is guided by the expertise of
developers. We hope to find synergistic effects between these techniques that will lead us to create cost
efficient and fault-revealing test suites for complex software systems.

Shttps://sqlite.org/testing.html
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