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1 Introduction

This technical report presents the accomplished, on-going and future research for the Project 6 (P6) of
the Graduate School - Intelligent Methods for Test and Reliability (GS-IMTR). P6 started in January
2020 and is expected to finish in December 2022. The goal is to study and design Feature Selection
(FS) approaches based on Deep Learning (DL) and one of the main use cases is variable selection for
Post-Silicon Validation (PSV).

1.1 Brief Review

This section takes a brief review on the conducted research in a chronological order. A brief timeline for
an intuitive overview is shown in Figure 1.

In the first half of 2020, we conducted broad literature review on the DL-based as well as representative
conventional FS approaches. Additionally, in order to have a more intuitive understanding of the research
target, we evaluated a few existing state-of-the-art FS methods [1, 2] respectively on the Maybach and
Tuning datasets by Advantest. At the beginning of the second half of 2020, we had the first idea of the
Feature Mask (FM) method [3], which became one of the core ideas for subsequent research. After a few
months’ iterative studies, the corresponding paper was submitted to IJCNN-2021 and finally accepted
in April 2021. During the meantime, a two-stage weighting approach based on the FM-module was pro-
posed to enhance the anomaly detection performance based on an autoencoder (AE). The corresponding
paper [4] was afterwards published at CASE-2021.

In the first half of 2021, we mainly studied the extension capabilities of the FM method for PSV, including
the feasibility of different feature representations and various downstream tasks (e.g. regression, classi-
fication and multi-task learning). In the mean time, an extended abstract on applying the FM-method
to PSV was accepted by TuZ-2022 [5]. Moreover, instead of our two-stage method proposed in [4], we
directly applied the FM-block to autoencoders in an end-to-end manner for One-Class Classification
(OCC). The new approach significantly improved AE-based OCC performance, which has been accepted
by IJCNN-2022 [6]. Inherited from the same idea, in 2022, we applied the FM-method to detect resistive
open defects under process variations for combinational circuits in collaboration with AP1. Finally, as
a first experiment, we applied the FM-method to multi-class classification for wafer map defect pattern
recognition in collaboration with P10.

Currently, according to the special requirements from Advantest, we have been exploring the possibility
of conditional feature selection based on the FM-method. An extended abstract has been accepted by
the IMTR-Workshop at ETS-2022 [7].

1.2 Report Outline

This report first introduces a general framework of DL-based FS methods as basic knowledge in Section 2.
Secondly, Section 3 presents the core idea for all of our subsequent studies, namely the FM method.
Following that, we show the applications of the FM method to anomaly detection and OCC scenarios
as well as two main collaborations in Section 4. Subsequently, Section 5 briefly discusses the on-going
research on conditional FS. Finally, this report ends up with the plan for the next steps in Section 6.
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Figure 1: A brief timeline for the conducted research of P6.
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2 Background

This section presents a general structure of popular DL-based feature selection approaches in literature.
Broadly speaking, most DL-based FS methods follow the structure shown in Figure 2. They simultane-
ously learn a feature mask m and a neural network gΘn

(·) that maximizes the prediction performance
with carefully designed constraints on m and/or special generation process of m.

Definition 1 (Feature Mask m). m is a vector, the dimension of which corresponds to the number of all
candidate features. The value of each entry in m indicates the importance of the corresponding candidate
feature. Typically, a larger value indicates more importance. m is also called feature importance vector,
feature weights and feature coefficients in literature. It should noted that the value of m is typically
non-negative and bounded. For example, common value ranges include [0, 1] as in [8] and (0, 1) as in [1].

X

m

⊙ ŶgΘn(·)

fΘm(·)

Figure 2: A typical DL-based feature selection framework. It jointly learns the feature mask m and a learning
network gΘn(·). For some methods, m is dependent of the input data X and this path is illustrated
in a dashed line.

In Figure 2, the dashed line illustrates the path from input X = [x1,x2, . . . ,xn]
T ∈ Rn×d to the feature

mask m ∈ Rd. This is because some prior works such as [9, 10] assume that m is independent of X
during the forward propagation. In this case, m can be understood as a jointly trainable weights of the
entire network. On the contrary, some methods such as [1, 3] leverage attention mechanism and m is
thus directly dependent of the input data which is calculated as m = fΘm(X). During training, for
many methods such as [9, 10], additional regularization R(·) must be applied to the feature mask m to
guarantee certain properties like sparsity in m. In total, the learning objective of DL-based FS methods
can be formulated as

argmin
m,Θ

L(g(x⊙m), y) + λ · R(m), (1)

where Θ = {Θn,Θm} and we omit the subscript for gΘn
(·) for simplicity. In the learning objective, the

first term is a loss function towards the learning task and λ is a weighting factor balancing the two terms.

In should be additionally mentioned that the commonly used regularization (e.g. ℓ2 weight decay) on the
weights of neural networks can be added to the aforementioned learning objective to avoid overfitting,
but such regularization is not directly related to the FS performance and we omit it for simplicity.

Overall, existing DL-based FS approaches typically aim to design special regularization terms or novel
ways to better regularize or generate m and it is expected that important features have greater weights
than unimportant features during the training. Finally, after training, we can select the top-k features
by comparing the importance scores in m.
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3 Feature Mask (FM)

The core idea of this report as well as the whole P6 is the Feature Mask (FM) method based on a novel
batch-wise attenuation and feature mask normalization1. The overall structure is shown in Fig. 3.

X

m

⊙ Ŷg(·)

fFM(·)

Figure 3: The feature selection framework based on the FM method.

3.1 Feature Mask Module

The FM-module, denoted as fFM(·), generates one unique feature mask m for the entire dataset as:
m = fFM(X). As shown in Fig. 4, the FM-module consists of three submodules below.

X

Non-linear transformation

Batch-wise attenuation

Feature mask normlization

m

fFM(·)

Figure 4: The structure of the FM-module.

Non-linear Transformation During training, the minibatch XB ∈ Rb×d is mapped to ZB = [z1, z2, · · · , zb]⊤ ∈
Rb×d under a non-linear transformation. In this way, the complex (non-linear) relations between different
input features are expected to be captured during training. In this paper, as an example, the non-linear
transformation is defined as

zi = W2 · ϕ(W1 · xi + b1) + b2 , (2)
where W1,W2, b1, b2 are of suitable dimensions and ϕ(·) is a nonlinear function such as tanh(·).

Batch-Wise Attenuation Each row vector of the resulting ZB depends on the corresponding input
sample. However, feature selection generally requires that the given data should have the same important
features. Hence, by explicitly averaging ZB over the minibatch, a unique vector for all samples within a
minibatch can be obtained during each training iteration. Specifically, for each minibatch, we calculate

z̄ =
1

B

B∑
i=1

zi . (3)

Feature Mask Normalization The relative importance of different candidate features should be consid-
ered during training. In this work, we use the softmax function to normalize z̄:

m = softmax (z̄), with mi =
ez̄i∑D
j=1 e

z̄j
. (4)

As can be seen above, the FM-module generates one unique feature mask m for the entire minibatch XB

during each training step. This idea can be interpreted as a novel Batch-Wise Attention mechanism.
1Some parts of this section are taken from our published work [3].
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3.2 Main Results of FM

The proposed FM method achieved superior performance in comparison with other contemporary ap-
proaches in a supervised manner, as shown Figure 5. One of the main advantages of our method is that
the FM-method does not require additional regularization R(·) on m, meaning we do not have as many
hyperparameters as those of other reference methods. Furthermore, the FM-method can be used for both
supervised and unsupervised feature selection tasks. We refer the interested readers to our full paper [3].
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Figure 5: Feature selection performance of the FM method in comparison with the following recent reference
methods: AFS [1], CancelOut [10], BSF [8], DFS [9], FSDNN [11] and ConAE [2].

4 FM-Derived Applications

As shown before, m actually denotes the importance for each individual feature. Therefore, a natural
idea is to leverage the FM-module as a batch-wise attention block to different use cases2. This section
briefly introduces the four conducted applications. More details can be found in [4, 6].

4.1 Two-Stage Semi-Supervised Anomaly Detection

Stage 1

xi zi x̂ifenc(·) fdec(·)

Stage 2

ZB ⊙

m

X̂B

FM

g(·)

Figure 6: The two-stage semi-supervised anomaly detection framework based on the FM-module.

[4] is our first paper that has applied the FM-module to other fields beyond feature selection. Specifically,
given a trained autoencoder (left of Figure 6), we train an FM-module jointly with a separate decoder to
identify the critical learned latent dimensions. After training, we can specify the number of important
latent features κ and a down-weight factor τ . Then, the less important latent features are down-weighted
by multiplying τ . Subsequently, weighted latent representations are fed to the decoder to obtain recon-
structions. Finally, the anomaly detection is performed by comparing the reconstruction errors as other
AE-based anomaly detection algorithms.

This method reached 1.3% better AUC on MNIST and 6.9% better AUC on CIFAR-10 than an autoen-
coder in terms of anomaly detection. Figure 7 demonstrates the AUC versus κ and τ for four exemplary
normal classes. The resulting surfaces were not flat. This indicates the necessity of the selection and
weighting for a learned latent space.

This method is important because it for the first time shows the selection and weighting for a trained
autoencoder still have contribution for better anomaly detection performance. Despite the improvements
brought by the second stage training and weighting in latent space, this method still faces a few challenges.
Firstly, it introduces two more hyperparameters which are data dependent and thus difficult to fine-tune.

2Some parts of this section are taken from [4, 6].
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Figure 7: AUC versus the two hyperparameters κ and τ .

Secondly, the training of m and the autoencoder is isolated. Therefore, it is effortful to ensure whether
the autoencoder is correctly trained for the second stage.

The concerns and drawbacks mentioned above enable our end-to-end solution which is presented in the
next section.

4.2 Weighted Autoencoder for One-Class Classification

X X̂Z ⊙

FM

Encoder Decoder

Figure 8: Autoencoder with weighted latent space.

In [6], we directly apply the FM-module to the latent space of an autoencoder to obtain an end-to-end
model as shown in Figure 8. It should be noted that the FM-module is not used for selecting the latent
features but weighting the latent features before feeding them to the decoder. In this way, it is expected
the most critical and representative latent features can be more focused, while the misleading latent
features are down-weighted.

This method is superior to the two-stage method [4] introduced above due to the absence of the two
hyperparameters κ and τ . Nonetheless, the novel end-to-end method achieved more than 1.8% better
AUC on MNIST and about 14.7% better AUC on the challenging dataset CIFAR-10 in comparison with a
vanilla autoencoder with the same architecture. Furthermore, this work also discovered the performance
degradation in autoencoders for one-class classification and the FM-module can significantly reduce the
degradation. Figure 9 shows the comparison on the two benchmarking datasets between our method
(BFW) and other reference methods.
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Figure 9: OCC performance comparison between our method (BFW) and the following reference state-of-the-art
approaches: DSVDD [12], ICS [13], OCGAN [14], LSA [15] and ADGAN [16].
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4.3 Collaborations

Unsupervised Resistive Open Defect Identification. Leveraging the weighted autoencoder presented
in the last section, our recent work aims to detect resistive open defects under process variations in collab-
oration with AP1 of GS-IMTR. Experiments confirms that our method outperform other unsupervised
anomaly detection algorithms as shown in Table 1. Moreover, as an unsupervised algorithm, our method
even had comparable performance to the supervised reference methods. We refer the interested readers
to our paper [17] for more details. This collaboration indicates that our FM-method can not only work
for academic benchmarking datasets but also valuable for volume testing.

Table 1: Comparison with unsupervised methods.
OCSVM [18] Isolation Forest [19] LOF [20] AE Ours

AUC 0.895 (± 0.000) 0.880 (± 0.008) 0.889 (± 0.000) 0.890 (± 0.006) 0.942 (± 0.005)

Wafer Map Defect Pattern Classification. A recent collaboration with P10 combines the weighted
autoencoder with an ordinary multi-class neural network for wafer map defect pattern recognition. In
this way, the proposed framework simultaneously predict the defect pattern class as well as the state
of each individual die in a wafer map. The novel architecture achieved comparable or better accuracy
than other state-of-the-art DL-based wafer map classifiers. For example, Table 2 shows the overall recall
comparison between our method and the other two popular methods. The collaboration with P10 implies
the potential of the FM-method in multi-class classification problems.

Table 2: Comparison of the recalls for each defect type.
None Center Donut Edge-Loc Edge-Ring Loc Random Scratch Near-Full

RF [21] 99.2% 87.0% 63.5% 58.3% 92.9% 27.1% 55.7% 9.8% 84.2%
DMC [22] 99.4% 90.7% 79.5% 76.0% 96.7% 66.5% 82.2% 21.6% 88.6%
Ours 99.4% 93.1% 80.8% 72.9% 97.3% 59.6% 91.1% 28.6% 89.5%

Comments. In total, the two recently accomplished collaborative projects have shown the effectiveness
and robustness of the proposed novel FM-method in different domains and tasks. In addition, FM-method
has been therefore evaluated in both supervised and unsupervised, one-class and multi-class classification
scenarios. The conducted experiments present great prospects of our research.

5 On-Going Research

5.1 Conditional Feature Selection

The current research focuses on conditional feature selection, where candidate features should be selected
given some preselected features. To enable this, we propose to fuse the information from the preselected
and candidate features in the shallow layers of a neural network targeting a given learning task. As a
result, the neural network acts as a guide to the feature selection module in a way that candidate features,
which can minimize the training losses given the preselected features, should be assigned with greater
importance scores.

According to user specifications, X is composed of two parts as X = [Xp, Xn]. That is, the preselected
Dp features Xp ∈ RN×Dp and the Dc candidate features Xc ∈ RN×Dc with D = Dc +Dp. The overall
framework is illustrated in Fig. 10. The FM-module generates m ∈ RDc . Afterwards, a transformation
fc(·) is applied to Xc ⊙m. In parallel, another independent transformation fp(·) is applied to the prese-
lected features Xp. Next, denoted by “concate” in Fig. 10, we fuse the outputs from both transformations
by concatenating them together. The fused representations are fed to a neural network g(·) to obtain
predictions Ŷ . Specifically, the preliminary research implements both encoding mappings fp and fc by
simple dense layer with non-linear activation. Naturally, the design of the two encoding mappings can
play a key role for the overall selection performance and we have been working on this issue.
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Figure 10: The proposed framework for conditional feature selection.

In this scenario, we primarily focus on the case where we select features based on some given preselected
features (as conditions). Nevertheless, the whole idea in Figure 10 can be easily extended to more
generic cases. For example, the “condition” is no longer or not limited to preselected features, but can be
additional data, expert knowledge and new attributes to the given datasets. For all the cases mentioned
before, we can simply use fp to encode them into suitable representations as conditions to train the whole
algorithm to obtain conditioned m. This is an important on-going work by us.

5.2 Preliminary Results

Case I: Voltage Selection for Open Circuit Detection This experiment investigates delays under which
features (varying voltages) are critical for defect identification given the delays under the voltage of 0.9V.
In total, we had respectively 1000 defective and 1000 non-defective samples with Dc = 11 and Dp = 1,
meaning that the conditional feature selection is performed towards a binary classification problem.
Fig. 11 shows the resulting accuracy over different subset sizes K from 1 to 12. K = 1 means that we
selected 0.9V as the only feature, while the other sizes denote that we select 0.9V and K − 1 different
voltages. Overall, our method shows similar performance as an exhaustive search, while the exhaustive
search is not feasible in practice due to its exponential computational complexity.
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Exhaustive
Ours

Figure 11: Accuracy over different subset sizes for our method and an exhaustive search.

Case II: Feature Selection for Post-Silicon Tuning In this experiment, the goal was to find out the four
most important candidate features under the condition that t2 was already preselected, i.e. Dc = 10 and
Dp = 1. For the exhaustive search, we need to evaluate

(
10
4

)
= 210 different candidate feature combina-

tions and trained a 3-layer multilayer perceptron by minimizing the MSE loss between the predictions and
the Figure-of-Merit (FoM). In total, it took about 86 minutes for the exhaustive search and the optimal
selection result was the combination of t1 to t5. On the contrary, our method was trained only once by
feeding all 10 candidate features and preselected features to the model. The learned feature importance
vector is shown in Figure. 12. We can see that t1, t3, t4 and t5 obtained the greatest importance scores
and were considered as the best candidate features given the preselected feature t2, which matched the
aforementioned exhaustive search results. It should be emphasized that it took about only 25 seconds (i.e.
0.4 minutes) to perform the full training for our method, corresponding to about 0.48% time consumption
of an exhaustive search with the same learning network architecture. The experimental results show that
our method is promising to efficiently solve conditional feature selection tasks in test and reliability.

Note that the detailed information about both datasets above can be found in [5, 17].
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Figure 12: The learned importance scores of our method for a real-world dataset. Larger scores indicate higher
importance of the corresponding candidate features.

6 Next Steps

Due to the time limitation, the main task in the rest time (about 8 months on the assumption of no
extensions) of this project is working on the doctoral dissertation. Therefore, the next steps for this
project are planned from the theoretical and implementation perspectives.

6.1 Theoretical Perspective

In order to maintain the consistency through different proposed approaches, we will mainly focus on the
following topics:

• Extensive evaluation of the proposed methods (i.e., FM, CFM and conditional FM) as well as
possible new approaches on more public benchmarking datasets provided by [23] to obtain an
objective justification of the feature selection capability of our methods.

• Due to the paper length limitations, we omitted comprehensive study of hyperparameters in some
published and under-review papers. Thereby, next steps must include thorough study of hyperpa-
rameters of proposed methods on representative public benchmarking datasets as well as confidential
datasets from Advantest.

• Further study and comparison between the proposed FM-method and other tightly related tech-
niques such as popular (sample-wise) attention techniques [24] as well as Batch Normalization [25].

• Although there are a few great survey papers in feature selection such as [23, 26], to the best extent
of our knowledge, there is no survey papers targets DL-based feature selection. However, from the
top machine learning conferences, we can clearly see the increasing interest in using DL to solve
feature selection problems. In the rest time of this project, we try to keep reviewing as many
DL-based FS papers as possible to make the background section of the dissertation more solid and
comprehensive.

6.2 Implementation Perspective

Currently, we already have a (revised) ready-to-use implementation for the FM method. The existing
implementation supports:

• End-to-end training towards different downstream learning tasks, e.g. classification, regression and
multi-task learning;

• Customized latent dimensions for the FM-block;

• Customized learning networks g(·);
• Several other DL-based FS algorithms.

Accordingly, the final version must consider the following requirements and functions:

• The Complementary Feature Mask method should be included, in which different and customized
complementary feature masks as well as losses for the complementary path should be supported;

• The final version must support conditional feature selection, in which both the preselected and
candidate features can be encoded according to user’s requirements;

• Automatic hyperparameter tuning based on Bayesian Optimization should be included;

• Easy interfaces for P2 (visualization).
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